VIDEO ANALOGICO y sus FORMATOS

Indice:

1.- Video analógico, qué es  y  tipos de formatos.

2.- Vídeo Prácticas.

3.- Video analógico, lo que también debes saber.

  • Sincronismos.
  • Medidas con un monitor de forma de onda.
  • Medidas con un vertorscopio.

4.- Conclusión.

————– + ————-

1.- Vídeo analógico, qué es  y  tipos de formatos.

El vídeo analógico es la imagen que se presenta sobre una pantalla de televisión y se obtiene tras aplicar una señal a un televisor trazándose líneas en la pantalla a mucha velocidad y gracias a nuestra persistencia retiniana (se mantiene la imagen en la retina durante una fracción de tiempo), conseguimos integrar las líneas y vemos imágenes completas

Tipos de Formatos

Existen cuatro tipos de señal de vídeo analógico: RGB, Componentes (YPbPr), Video-S (Y/C), Vídeo Compuesto (CVBS).

Generación de formatos de vídeo analógico
Fig. 1.Generación de formatos de vídeo analógico

RGB

Es el formato original, el que entregan las cámaras de vídeo tras captar la escena. Se usan tres componentes ( Rojo, Verde y Azul ) , ocupando un ancho de banda de 5 MHz cada canal.

Este formato se utiliza para visualización, es decir, conexión directa a monitores, no se han fabricado equipos que lo graben debido al su gran ancho de banda. Puede transmitir video con calidad HD.

Los conectores usados son:  el BNC en equipos profesionales, el VGA para proyectores y pantallas planas y el EUROCONECTOR para televisores más antiguos.

Euroconector - EL CAJON DEL ELECTRONICO
Fig. 2 . Equivalencia de pines del Euroconector y el  JP21 (equivalente Japonés)

Los equipos de fabricación Japonesa usan un conector igual al euroconector europeo pero con distinta correspondencia de sus pines.

Cuando una televisión tiene varios euroconectores, normalmente sólo uno será capaz de recibir la señal RGB, debemos identificarlo usando el manual, además debemos entrar en el menú del televisor y configurar esa entrada para señal RGB. Por defecto todas las entradas de euroconector van configuradas para vídeo compuesto que tiene menos calidad que RGB.

COMPONENTES (R-Y , B-Y , Y)

Formato obtenido del RGB mediante una matriz sumadora sin reducir apenas la calidad  pero sí el ancho de banda, pasando de 15 MHz  para RGB a 7 MHz, este se consigue eliminando la información redundante de luminosidad de las tres componentes RGB. Se transmite mediante tres líneas.

Las componentes R-Y y B-Y contienen la información de color y la componente de Y o luminancia aporta la información de luminosidad de la imagen y además contiene los sincronismos necesarios. La luminancia se obtiene de la siguiente forma:

 =  0,30 R  +  0,59 G  +  0,11 B

, G , B   = componentes de la señal RGB

Entrada/salidas para este formato las encontramos en multitud de equipos profesionales, también en las pantallas planas y proyectores. Este formato se utiliza generalmente como base para la digitalización de señales de vídeo. Puede transmitir video con calidad HD.

Los conectores usados para este formato son: el RCA en equipos domésticos y el BNC en equipos profesionales.

Conectores de señal de COMPONENTES - EL CAJON DEL ELECTRONICO
Fig. 3. Conexiones de señal de componentes

En equipos domésticos, a las las componentes R-Y y B-Y se las identifica con las palabras PR/CR y PB/CB.

Como podemos apreciar en la figura de arriba,  los equipos profesionales, usualmente, comparten los conectores BNC para la señal de RGB y la de componentes, la selección se hace mediante un conmutador.

VIDEO S (Y/C)

Posee dos componentes :  luminancia y crominancia (croma).

La señal de luminancia es la misma que en la señal de componentes.

La crominancia se obtiene modulando (modulación tipo QAM)  una subportadora de 4,43 MHz con las componentes R-Y y B-Y, este proceso implica una pérdida importante de calidad.

Para poder recomponer la información de color se necesita una muestra de la subportadora “limpia” (sin modular) consiguiendo así una referencia de la amplitud y fase originales para saber a partir de qué valor hay que comparar el nivel de tonalidad y saturación. Para ello, se añade unos ciclos de la subportadora a la señal de sincronismo después de cada barrido horizontal. Estos impulsos se conocen como Burst o Color Burst.

Los antiguos grabadores S-VHS y Hi 8 graban este formato, actualmente lo podemos encontrar como entrada de pantallas planas y proyectores, se usa un conector minidin, su resolución en el sistema PAL es de 720 x 576 píxeles (realmente tiene 625 líneas pero sólo 576 son visibles).

Conector minidin para VIDEO S - EL CAJON DEL ELECTRONICO
Fig. 4. Conector minidin para vídeo S

VIDEO COMPUESTO (CVBS)

En los equipos, este tipo de señal se suele identificar como CVBS (Color, Vídeo, Borrado y Sincronismos), se obtiene mezclando la señal de croma con la luminancia.

La croma se inserta en los huecos del espectro que no están siendo usados por la luminancia,  lo que hace que se reduzca a 5 Mhz el ancho de banda utilizado. El inconveniente es que cuando la  imagen es compleja (mucho entramado), los huecos libres de la luminanacia se reducen creando una distorsión denominada moire.

Espectro de un señal de video compuesto - EL CAJON DEL ELECTRONICO
Fig. 5. Espectro de la señal de vídeo compuesto
Distorsión de Moiré - EL CAJON DEL ELECTRONICO
Fig. 6. Distorsión de Moiré en una imagen

El vídeo compuesto se transmite con una sola línea, ideal para modular un canal de radiofrecuencia. Los emisores de vídeo analógico emiten en este formato, su resolución en el sistema PAL es de 576 x 625 píxeles.

Este formato se graba en los antiguos equipos VHS y 8 mm y su calidad es algo inferior al vídeo S.

Los conectores que se utilizan son: el BNC para equipos profesionales y el RCA (amarillo) para los domésticos.

2.- Vídeo Prácticas

2.1. –   Medida de diferentes parámetros de la señal de señal de vídeo compuesto  mediante un Osciloscopio.

2.2. –  Estudio de los formatos de vídeo analógicos: Video Compuesto, Video S y RGB. Se compara la calidad entre los mismos y se estudia la señal de sincronismo que se utiliza en RGB.

3.- Vídeo analógico, lo que también debes saber.

Sincronismos

Son señales que acompañan a todos los formatos de vídeo analógico para que el televisor pueda sincronizarse con el equipo fuente de imagen ( cámara o reproductor).

Son dos los tipos de sincronismos que se manejan: Horizontal y Vertical, estando presentes en todos los formatos de señal analógica.

Sincronismo horizontal: establece la velocidad a la que se trazan las líneas de la imagen, en el sistema PAL es de 15625 Hz.

Sincronismo Vertical: establece la velocidad a la que se muestran los grupos  de líneas que conforman una imagen o cuadro, en el sistema PAL es de 50 Hz.

Señal de video compuesto en Osciloscopio
Fig. 7. Retrazado vertical en señal de vídeo compuesto

En la señal de RGB los sincronismos pueden transmitirse de tres formas distintas:

  • Sincronismos separados (RGBHV): hay una línea para el sincronismo horizontal HSync y otra  para el sincronismo vertical VSync. Se necesitan 5 hilos para la transmisión, un ejemplo es la señal RGB que se lleva desde un ordenador a un monitor mediante cable VGA
Conector VGA - EL CAJON DEL ELECTRONICO
Fig. 8. Conector VGA.
  • Sincronismo compuesto (RGBS): Se transmite el sincronismo horizontal y vertical por un mismo cable, se necesitan por tanto un total de 4 hilos para la transmisión.
  • Sincronismo en verde (RGsB): La información del sincronismo horizontal y vertical se transmite junto con la señal de color verde, necesitándose sólo 3 hilos para la transmisión.

En la siguiente figura vemos como es posible seleccionar si el sincronismo se introduce en el verde o no, también permite cambiar la polaridad de los sincronismos, lo normal es que sean negativos (almenas hacia abajo).

Generador de Vídeo - EL CAJON DEL ELECTRONICO
Fig. 9. Generador de vídeo Promax GV 698 (utilizado en la vídeo práctica)

En los formatos Componentes, Vídeo S y Vídeo compuesto, al poseer la luminancia,  esta es la que contiene los sincronismos horizontal y vertical.

Medidas con monitor de forma de onda.

Con un monitor de forma de onda o un osciloscopio podemos medir los valores de tensión y tiempo de la señal de vídeo para asegurarnos que se ajustan a su valor normalizado.

Cuando se analiza una señal de vídeo analógico se  hace a partir de una imagen patrón llamada barras de color. Una línea en el formato vídeo compuesto tendría la forma y medidas  que se muestran en la siguiente figura:

Línea de TV - EL CAJON DEL ELECTRONICO
Fig. 10. Valores standard de Línea de TV en formato vídeo compuesto

Hay que destacar:

1º. La tensión pico a pico (Vpp) medida entre la base del sincronismo y el nivel de blanco (barra blanca) es de 1 voltio.

2º. La barras de color están ordenadas de forma que tienen un valor de luminancia descendente

3º. En el pórtico posterior se inserta la ráfaga de sincronismo de color o BURST, que permite al televisor demodular la información de color de cada línea.

4º. La información de color (croma) aparece en la figura en color gris, esta es la señal modulada en QAM (modulación en amplitud y fase), cuanto mayor sea su amplitud mayor será la saturación del color.

En la siguiente figura se aprecia como se van obteniendo los diferentes formatos de vídeo analógico a partir de la señal de RGB.

Línea de TV en todos los formatos - EL CAJON DEL ELECTRONICO
Fig. 11. Línea de TV en todos los formatos de vídeo analógico

Medidas con un vertorscopio

Este equipo nos permite comprobar la colorimetría de la imagen, tras aplicarle una imagen  de barras de color (imagen patrón), nos mostrará una serie de puntos correspondientes a cada color. Realmente lo que se representa  es la componente B-Y en el eje horizontal y la R-Y en el vertical.

El equipo a medir debe generar la imagen de barras de color. En el sistema PAL el vectorscopio nos mostrará 12 puntos (6 en el sistema NTSC), estos puntos definen la tonalidad y saturación de cada color.

Cada color se identifica con sus siglas en mayúscula y en minúscula, por ejemplo el  Magenta: MG y mg, esto es debido a que en el sistema PAL, se invierte cada dos líneas el componente R-Y, esto no sucede con el sistema NTSC. Esta propiedad del sistema PAL hace que sea más inmune a las interferencias por reflexiones de la señal cuando se transmite por radiofrecuencia.

Vertorscopio - EL CAJON DEL ELECTRONICO

Fig. 12. Retícula de un vectorscopio para sistema PAL.

Monitor de forma de onda - vectorscopio - EL CAJÓN DEL ELECTRONICO
Fig. 13. Monitor de forma de onda – vectorscopio con vídeo compuesto en sistema PAL.

Las líneas que aparecen uniendo los diferentes puntos reflejan la transición del color de una barra al color de la otra, por ejemplo la barra de color cian (CY) tiene a sus lados la verde (G) y la amarilla (YL), por este motivo el punto CY está enlazado con el YL y el G. Esta transición realmente es un cambio de fase (tonalidad) y amplitud (saturación de color) de la subportadora de color (onda senoidal de 4,43 Mhz).

Procedimiento de uso un vectorscopio:

Este vídeo aclara muchos conceptos referentes al uso del vectorscopio:

Veámoslo ahora pasito a pasito:

1.- En una entrada del vectorscopio, introducimos la señal de barras de color generada en el  equipo fuente a medir.

Conexiones de un vectorscopio Tektronix WVR 500 - EL CAJÓN DEL ELECTRÓNICO
Fig. 14. Conexiones de un vectorscopio Tektronix WVR 500

2.- Realizamos la sincronización de la señal aplicada con la retícula mostrada por el vectoscopio, para ello hacemos coincidir los segmentos que se generan con el BURST de la señal introducida con los que aparecen en la retícula, esto se hace con un potenciómetro del vectorscopio.

Fig. 15. Retícula de vectorscopio Tektronix WVR 500

3.- En el menú del vectorscopio comprobamos que el ajuste de saturación de color coincida con el de la señal aplicada, lo normal es que la saturación de color sea del 75%.

Fig. 16. Frontal de vectorscopio tektronic WVR500

4.- Comprobamos que los puntos que nos aparecen coincidan en las cajas de la retícula, esto indica que la colorimetría esta bien. Lo ideal es que los puntos queden dentro de las cajas pequeñas con lo que el error estaría acotado en un 5 % de saturación y 5º de variación de fase.

Fig. 17. Ajustes de color en un CCU SONY M5P

Como ejemplo en la figura anterior apreciamos los ajustes que nos proporciona una Unidad de Control de Cámara SONY M5P.

Notas a tener en cuenta:

  • La situación de cada punto indica la saturación y la tonalidad del color.
  • Un punto más hacia la periferia indica una saturación de color mayor.
  • Un punto con una variación de ángulo (variación de fase), indica una variación de la tonalidad del color.
  • Las cajas grandes identifican una rango variación de saturación del 20% y una variación de tonalidad de 20º.
  • Las cajas pequeñas identifican un rango de variación de saturación del 5% y una variación de tonalidad de 5º.

4.- Conclusión

Aunque estamos en la era del vídeo digital, los formatos de vídeo analógico los vamos a encontrar en casi todos los equipos de imagen, de hecho todos los formatos digitales se obtienen muestreando la señal de vídeo analógico de componentes o RGB.

Una señal de RGB y de componentes puede transmitir vídeo en HD, un ejemplo lo tenemos en la conexión de un ordenador con su monitor mediante VGA, lo que se transmite por este conector es señal RGB.

El motivo fundamental de que el vídeo analógico haya perdido la batalla frente al digital es su  acentuada pérdida de calidad al realizar sucesivas copias.

Un Saludo.

LeandroGG68

GuardarGuardar

7,168 total views, 1 views today

SONIDO DIGITAL

Indice:

1.- Sonido digital, ¿qué es?

2.- Vídeo Prácticas: Tarjeta capturadora Audio Control 1 y grabadores digitales Marantz PDM 660 e iKey Plus.

3.- Sonido digital, lo que también debes saber.

4.- Conclusión.

————– + ————-

1.- Sonido digital, ¿qué es?

El sonido se genera por la variación de presión en un medio (aire usualmente), por lo tanto es analógico,  los equipos actuales trabajan de forma digital (ceros y unos), lo que obliga a traducir esta variación analógica (infinitos valores en el tiempo) a valores digitales, a estos datos digitales es a lo que se le llama sonido digital.

Los equipos que trabajan con sonido digital poseen un conversor A/D (Analógico/Digital) que convierte  la señal analógica a digital, este proceso requiere de tres pasos: muestreo, cuantificación y codificación.

Conversor Analógico/Digital - EL CAJÓN DEL ELECTRÓNICO
Fig. 1. Conversor Analógico Digital (A/D)

Muestreador: Toma muestras de la señal analógica (señal en tiempo discreto), se debe cumplir que :

Fm  >  2  * BW     (teorema Nyquiest)

F: Frecuencia de muestreo (Hz)

BW (BandWidth): Ancho de banda de la señal a muestrear

Como ejemplo, el sonido grabado en un CD está muestreado a 44100 Hz, como el ancho de banda comúnmente adoptado para la música es de 20 a 20000 Hz, se cumple el teorema de Nyquiest. Hacer que se cumpla el teorema de Nyquiest en demasía (sobremuestreoNO aumenta la calidad de la señal, sólo aumenta la cantidad de datos generados. Como referencia las frecuencias de muestreo más usadas por las capturadoras de audio son 32KHz, 44,1KHz, 48KHz,  96 KHz, y 192,4 KHz.

Cuando la frecuencia de muestreo es inferior a la necesaria se produce la distorsión por aliasing, que impide recuperar fielmente la señal muestreada.

Muestreo de una señal - EL CAJÓN DEL ELECTRÓNICO
Fig. 2. Muestreo de una señal.

Cuantificador: Cada muestra obtenida se hace corresponder con un valor (señal cuantificada). El número de valores posibles depende del número de bit del conversor (resolución).

Cuantificación y codificación - EL CAJÓN DEL ELECTRÓNICO
Fig. 3. Cuantización y codificación

Por ejemplo, el sonido grabado en un CD utiliza un conversor A/D de 16 bits, lo que proporciona 216 = 65536 valores posibles para la cuantificación. Cuantos más valores se dispongan más precisa será la cuantificación, lo que reducirá el error de cuantificación.

Codificador: A cada valor cuantificado se le asigna un código binario; por ejemplo el sonido con calidad CD usa palabras binarias de 16 bits.

El flujo de datos binarios obtenidos en esta primera fase de codificación es muy elevado, es el formato PCM o sin compresión, por ejemplo, este formato es el que se utiliza en la grabación de CDs, que con una frecuencia de muestreo de 44,1 Khz y 16 bit, una hora de música ocupa unos 700 MB.

Cuando el destino del sonido digital es su transmisión y/o almacenamiento y no se requiere la máxima calidad, se aplica una  segunda codificación que reduce el tamaño a consta de la calidad,  un ejemplo es el formato mp3, donde se obtienen reducciones de 7 o 10 a 1 con una calidad aceptable (192  y 128 kbps).

Tras operar con los datos binarios, los equipos de sonido digital los transforman en una señal analógica, para finalmente, tras su amplificación, aplicarla a un altavoz que generará la presión acústica correspondiente (sonido), de esto se encarga el conversor A/D (Analógico/Digital).

2.- Vídeo Práctica: Tarjetas capturadoras de sonido

VIDEO 1: Funciones y puesta en funcionamiento de una capturadora de sonido Audio control 1:

 

VIDEO 2: Funciones y puesta en funcionamiento de un grabador digital Marantz PMD 660:

 

VIDEO 3: Funciones y puesta en funcionamiento de un grabador digital de sonido iKEY PLUS:

 

3.- Sonido digital, lo que también debes saber

En la siguiente figura podemos observar, de forma genérica, los bloques de un equipo de sonido digital.

Equipo de sonido digital: diagrama de bloques - EL CAJÓN DEL ELECTRÓNICO
Fig. 4. Bloques de un equipo de sonido digital.

Filtro antialiasing: Evita que se tomen muestras de señales de frecuencias superiores al ancho de banda deseado, esto elimina la distorsión por aliasing. La frecuencia de corte de este filtro depende de la frecuencia de muestreo, en el caso típico de equipos de CD-Audio, como la frecuencia de muestreo es 44100 Hz, se establece la frecuencia de corte en 20000Hz, un 10% aproximadamente menos que la frecuencia crítica que es 22500Hz, esto se hace así debido a que los filtros no son perfectos y tienen un pendiente de caída determinada tras su frecuencia de corte.

Filtro de reconstrucción: Asegura que la señal analógica de salida no contenga componentes de frecuencia superiores a la de la frecuencia máxima de trabajo.

Soluciones a problemas del sonido digital

Distorsión por Aliasing

Solución: Muestrear a una frecuencia un 10 % superior a la frecuencia máxima de la señal (frecuencia crítica). Esta frecuencia se establece con el software de grabación utilizado en el caso de capturadoras de sonido o mediante el menú de configuración en los equipos. Lo normal es trabajar a 44100 Hz.

Error de cuantificación

Se pretende conseguir que el ruido generado por este error será inapreciable, para ello  su nivel debe ser menor que el ruido de la señal analógica a muestrear.

Solución: Aumentar el nº de bits del cuantificador. En las tarjetas capturadoras se puede ajustar con el software de grabación, en los equipos dedicados normalmente no. Lo normal es trabajar a 16 bits y con un frecuencia de muestreo de 44100 Hz con lo que se obtiene una relación S/N (Señal/Ruido) de 98,08 dB, superior a la relación S/N de la mayoría de las señales analógicas.

La ecuación que define la relación S/N a partir de los bits del conversor A/D es :

S/N(dB) = 20 log 2n  + 1,76

n = número de bits del cuantificador del conversor A/D

Saturación o clipping

Aparece cuando el nivel de la señal analógica de entrada es superior a la tensión de fondo de escala del convertidor A/D,  esto genera un recorte de la señal por su parte superior. Esta distorsión se puede ver fácilmente con programas de edición de audio como por ejemplo Adobe Audition o Audacity (gratuito), sólo hay que hacer zoom en un tramo sonoro dónde se aprecie que el nivel es excesivo, veremos las muestras tomadas y la imagen se parecerá a la de la figura siguiente.

Saturación en un convertidor Analógico/Digital - EL CAJÓN DEL ELECTRÓNICO
Fig. 5. Saturación en un convertidor A/D.

Solución: Ajustar el nivel de entrada de grabación para que no se alcance el nivel de CLIP (0 dB usualmente).

Ejemplo de equipo de sonido digital

En la siguiente figura se aprecian los bloques de una  capturadora de sonido Audio Control 1, como la utilizada en la vídeo práctica.

Esquema de capturadora de sonido Audio Control 1 - EL CAJÓN DEL ELECTRÓNICO
Fig. 6. Capturadora de sonido Audio Control 1. Esquema de bloques

Contiene un conversor A/D y dos conversores D/A, uno para cada dos salidas, también se  aprecia como el circuito para monitoreo puentea los conversores.

En la siguiente tabla vemos como el fabricante describe las características técnicas de esta capturadora.

Características de Capturadora Audio Control 1 - EL CAJÓN DEL ELECTRÓNICO

Características de Capturadora Audio Control 1 - EL CAJÓN DEL ELECTRÓNICO
Fig. 7. Capturadora de sonido Audio Control 1. Características técnicas

 Es de destacar las siguientes siguientes características de esta capturadora:

  • Alta frecuencia de muestreo, dentro del ámbito profesional:  44.1, 48, 96 y 192 KHz 
  • Alta resolución de los convertidores: 16 y 24 bits
  • Relación S/N buena: 100 dB
  • Bajo ruido en la entrada de micrófono : -128 dBu

 

4.- Conclusión

A la hora de elegir un equipo de sonido digital debemos revisar las características de los conversores que posee. Algunos equipos de baja calidad poseen un conversor A/D de menos bits que el conversor D/A, publicitando que el equipo posee una resolución que se hace corresponder con los bits del convertidor D/A. Un equipo de calidad tiene la misma resolución en sus dos conversores.

La relación S/N es una característica que no se nos debe despistar, hay que exigir un mínimo de 95 dB, en caso contrario el equipo aplicará más ruido que el propio de la señal que manejamos.

Aunque dispongamos de una capturadora como la mostrada en este artículo, no conseguimos más calidad de sonido al sobremuestrear una señal, es decir, al sobrepasar el teorema de Nyquiest, sólo sobredimensionados el archivo obtenido, tampoco obtendremos más calidad aumentando la resolución de bits, si la señal analógica tiene una relación S/N inferior a la que nos proporciona la resolución adoptada.

Bueno, espero que esta pequeña incursión en los conceptos básicos del sonido digital os sea de utilidad.

Un Saludo.

LeandroGG68

GuardarGuardar

6,261 total views, 2 views today

MANDO MEDIANTE SMARTPHONE DE UNA VIVIENDA CONTROLADA POR RELÉ PROGRAMABLE LOGO V8 SIEMENS.

INDICE:

1.- ¿Qué es un relé programable.

2.- Control de iluminación con Smartphone:
2.1.- Objetivo.

2.2.- Pasos a seguir.

2.2.1.- Configuración de red del Logo V8.

2.2.2.- Programación LOGO!V8 con logosoftcomfort.

2.2.3.- Manejo con smartphone servidor web LOGO!V8.

 

 

1.- ¿Qué es un relé programable?.

Es un dispositivo electrónico que permite controlar aplicaciones domésticas y para el control de sencillas automatizaciones de maquinaria industrial, pequeños procesos industriales y así como aplicaciones del sector terciario (hoteles, edificios oficiales, universidades, etc…).

Conceptualmente son similares a los autómatas programables de tipo compacto, aunque presentan ciertas ventajas e inconvenientes respecto a éstos que a continuación paso citar:

logo v8
Figura 1. Logo!V8.
    • Inconvenientes de los relés programables frente a los PLC’s:
      – La ejecución de los programas en memoria es más lenta.
      – Disponen de menor potencia de cálculo que sus hermanos mayores.
      – La conexión de módulos de ampliación (de E/S, de comunicaciones, etc), es limitada.
    • Ventajas de los relés programables frente a los PLC’s:
      – Son más económicos.
      – La mayoría de modelos tienen integrada en su parte frontal una pantalla y teclado que permite su programación y parametrización.
      – Son de fácil instalación.
      – Disponen de funciones integradas de programación de uso inmediato en instalaciones domésticas.
      – En la actualidad existen modelos con bastante capacidad de comunicación y conexión a redes Ethernet y buses domóticos (KNX-EIB).

Siemens fabrica el relé programable LOGO y actualmente en el de 8ª generación ha implementado bastantes mejoras sobre todo en el area de las comunicaciones.

2.- ¿Control de iluminación con smartphone?.

2.1.- Objetivo.

En este ejemplo vamos a configurar el Logo!V8 de Siemens para poder controlar dos puntos de luz de una vivienda. Ambos puntos de luz se pueden controlar desde el propio lugar de la vivienda accionando un pulsador, de forma centralizada accionando la tecla de cursor arriba o función “F1” del Logo V8 o bien de forma descentralizada a través del smartphone.

2.2.- Pasos a seguir.

2.2.1.- Configuración de red del Logo V8. 

Tenemos el Logo!V8 ya conexionado, accionamos la tecla  «Esc» y accedemos al                          submenú «Red» «Dirección IP»,  haciendo la  siguiente configuración:

Dirección IP: 192.168.0.1
Máscara Subred: 255.255.255.0
Pasarela: 192.168.0.0.

pantalla red

 

2.2.2.- Programación LOGO con logo! softcomfort V8.

A continuación pasamos a realizar el programa de control con el software Logo! sofcomfort V8.
Desde este enlace puedes descargar una demo:

http://w3.siemens.com/mcms/programmable-logic-controller/en/logic-module-logo/demo-software/pages/default.aspx

Realizamos el siguiente programa:

programa

La función «OR» permite el control de la función interruptor bifuncional, bien a través de los pulsadores situados en el habítáculo (I1 e I2) y también desde el propio logo en el caso de la lámpara Q1 con la tecla «cursor arriba» y para el caso de la lámpara Q4 con la tecla de «función F1».

A continuación transferimos el programa al logo!  V8:

transferencia programa

transferncia-1

 

2.2.3.- Manejo con smartphone servidor web LOGO V8.

Por último  tenemos que conectar nuestro smartphone a la red Wi-Fi del router en nuestro caso Wlan89 y en la barra de direcciones de cualquier explorador Chrome, Explorer, etc.., poner la dirección IP del Logo que en nuestro caso era 192.168.0.1 de esta forma accederemos al servidor Web del Logo mostrando la siguiente pantalla:

servidor web logo

A continuación seleccionamos el menú language Español e introducimos el Password en nuestro caso el que viene por defecto «logo».

Una vez iniciada sesión, el servidor web de LOGO! muestra toda la información de sistema del módulo base LOGO!, incluida la generación del módulo, el tipo de módulo, la versión de firmware (FW), la dirección IP y el estado del módulo.

servidor web logo_1

Por último entrando en la opción LOGO! BM o LOGO! TD accederemos a la pantalla desde la cual podemos visualizar mensajes de texto y accionar las teclas de cursor o función que nos van a permitir controlar el Logo a través del smartphone.

servidor web logo_3

Para activar la funcionalidad del cursor programado, pulse o toque la tecla ESC. Las teclas
de función siempre están activadas. A continuación, proceda del siguiente modo:
* Para activar entradas de impulso, pulse o toque la tecla de cursor o de función correspondiente.
*Para activar entradas de señal continuas de nivel alto, haga doble clic o toque dos veces la tecla de cursor o de función correspondiente.
*Para desactivar la tecla de cursor o de función programada, pulse o toque la tecla ESC de nuevo.

 

AUTOR:

Francisco Sánchez Lucas

Profesor del Dpto. de Automática y Robótica – SALESIANOS – CARTAGENA

Colaborador de EL CAJÓN DEL ELECTRÓNICO

Revisión técnica: leandrogg68

12,082 total views, 1 views today

PROCESADOR DE VOZ AVANZADO

Indice: 

1.- Procesador de voz avanzado, ¿qué es?

2.- Vídeo Práctica: Instalación y configuración de un procesador de voz avanzado Behringer

3.- Secciones del procesador: ULTRA VOICE DIGITAL VX-2496

4.- Conclusión

————– + ————-

1.- Procesador de voz avanzado, ¿qué es?

Un procesador avanzado como el de la figura 1, es una mezcla de preamplificador de micrófono, amplificador integrado y ecualizador,  también nos permite una conexión a un sistema de grabación en disco duro (salida RECORDING).

 

Ultravoice digital
Figura 1. Ultra Voice Digital
Procesador de voz avanzado
Figura 2. Entradas y salidas Ultra Voice Digital VX-2496

 

2.- Vídeo Práctica: Instalación y configuración de un procesador de voz avanzado Behringer

VideoPráctica en la que muestro la instalación y configuración de un procesador de voz avanzado Behringer Ultra Voice Digital VX-2496, probando algunas de sus secciones mas interesantes, ya que este procesador nos permite realizar una variedad de configuraciones, como podéis comprobar en el siguiente apartado.

 

3.- Secciones del procesador: ULTRA VOICE DIGITAL VX-2496

Este procesador de voz avanzado tiene 6 tipos de secciones diferentes, para así realizar distintos tipos de configuraciones, veamos a continuación sus características:

1. DISCRETE VINTAGE INPUT: Esta sección se trata de un preamplificador para determinar el nivel de entrada tanto del micrófono como de línea.

Procesador de voz avanzado
Figura 3. Preamplificador
  • LINE: Selecciona entrada de línea (pulsado) y entrada de micrófono (sin pulsar).
  • +48V: Alimentación para micrófonos de condensador.
  • GAIN: Potenciómetro para ajustar el nivel de entrada.
  • FRECUENCY: Selección de la frecuencia de corte por debajo de la zona de baja frecuencia que queremos eliminar.
  • Ø INV: Conmutador que invierte la fase de la señal en 180º.
  • LO CUT: Conmutador para activar un filtro paso alto (corte de bajos), para eliminar ruidos no deseados en frecuencias bajas.

2. EXPANDER: Es un expansor que reduce el volumen de una señal en pasajes silenciosos, es decir, atenúa o elimina ruidos parásitos no deseados. Por ejemplo, para eliminar interferencias molestas de otros instrumentos que, por ejemplo hayan llegado a través de los auriculares del cantante y que también hayan quedado grabadas.

Procesador de voz avanzado
Figura 4. Expansor
  • THRESHOLD: Para determinar el nivel de umbral por debajo del cual actuará el expansor (dB).
  • DEPTH: Para determinar el grado de disminución; cuanto mayor sea el valor, mayor será la atenuación del sonido por debajo de umbral.
  • GATE: Con este conmutador presionado, este se comportará como una puerta de ruido, esta opción es muy apropiada para la edición de impulsos sonoros, ya que se trata de señales relativamente cortas.

3. TUBE EMULATION: Esta sección nos permite proporcionar a la voz ligeros efectos de distorsión y saturación, por lo que se añaden sobretonos¹ para aumentar la zona de agudos.

Procesador de voz avanzado
Figura 5. Emulador de válvula
  • DRIVE: Para determinar la intensidad del efecto de saturación.
  • TUNING: Para determinar el campo de frecuencia que debe saturarse.
  • FULL BW: Conmutador (presionado) para determinar el campo de frecuencia completo.

4. OPTO COMPRESSOR: La función de un compresor óptico es disminuir la diferencia entre los pasajes silenciosos y los sonoros, por tanto, cuando los niveles superen un umbral determinado, pasan a la salida con un nivel de amplificación menor.

Compresor
Figura 6. Funcionamiento de un compresor
Procesador de voz avanzado
Figura 7. Opto compressor
  • THRESHOLD: Para determinar a partir de que nivel el compresor inicia la compresión.
  • FAST: Conmutador (presionado) para que el compresor inicie muy rápido la compresión, una vez se halla superado el nivel.
  • HARD RATIO: Para modificar el grado de disminución de la señal al máximo. el compresor se convierte en un limitador.
  • RELEASE: Potenciómetro para determinar como de rápido debe aplicarse la compresión una vez que se haya superado el umbral.
  • OUTPUT: Potenciómetro para regular el volumen de salida de la señal comprimida.
  • ENHANCER: Potenciómetro para compensar las pérdidas de los posibles campos de frecuencias perdidos.

5. VOICE-OPTIMIZED EQ: Se trata de un ecualizador de tres bandas, que nos permite aumentar o disminuir los campos de frecuencia para compensar las irregularidades sonoras de la señal de entrada.

Procesador de voz avanzado
Figura 8. Ecualizador
  • TUNING: Potenciómetro para seleccionar un campo de frecuencias.
  • WARMTH: Potenciómetro para elevar o disminuir el campo de frecuencias seleccionado.
  • PRESENCE: Potenciómetro para añadirle a la señal agudos y medios superiores (ámbito 1700Hz, para que el canto se asemeje mas a un primer plano), es decir, para darle mas brillantez a la voz.
  • BREATH: Potenciómetro para elevar o disminuir en 8KHz, los ruidos de la señal típicos de la voz.
  • ABSENCE: Conmutador (presionado) para reducir las frecuencias que ocasionan un sonido feo.

6. OPTO DE-ESSER y MASTER FADER: Con esta última sección podremos eliminar los sonidos sibilantes² y  para eliminar acoplos.

Procesador de voz avanzado
Figura 9. Opto DE-ESSER y Master fader
  • THRESHOLD: Potenciómetro para determinar la fuerza con la que se van a eliminar los sonidos sibilantes.
  • CUT FREQUENCY: Potenciómetro para seleccionar el campo de frecuencias que debe eliminarse.
  • MASTER FADER: Potenciómetro para ajustar la señal de salida a la sensibilidad de entrada del aparato conectado en el transcurso de la señal.

 

Aclaraciones:

Sobretonos: Es cualquier frecuencia mayor que la frecuencia fundamental de un sonido.

Sibilante/sibilancia: Es un ruido inspiratorio o espiratorio agudo, que suele ser un efecto secundario en el canto.

 

4.- Conclusión

Este tipo de procesador es muy adecuado para  directo,  en optimización de  señales de canto gracias a su profesional procesamiento de señales.

Nos permite la conexión a un sistema de  grabación, ya que contiene un convertidor A/D  de 24 bits, por lo que evita pasar por una mesa de mezclas y se obtiene una señal limpia, ya que los posibles ruidos secundarios, que pueden surgir por la alimentación, por ejemplo, quedan excluidos desde un principio.

En definitiva, cuando una voz suena muy presente y llena en la mezcla quiere decir en la mayoría de los casos que se ha “manipulado” como es debido.

 

Un saludo.

unnamed-min copia Daniel Rodríguez

Daniel Rodriguez Fernandez

Alumno de 2º de Sistemas de Telecomunicación e Informáticos – SALESIANOS – CARTAGENA

Colaborador de EL CAJÓN DEL ELECTRÓNICO

Revisión técnica: leandrogg68

 

7,675 total views, 1 views today

Instalación de altavoces en automóvil

Índice:

1.- Instalación de altavoces en automóvil

2.- Vídeo tutorial

3.- Otros conceptos que también debes saber

  • Altavoces de vías separadas
  • Altavoces coaxiales
  • Watts Peak
  • Watts RMS

4.- Conclusión

 

1.- Instalación de altavoces en automóvil

gfgfg

En el siguiente post vamos a explicar cómo desmontar paso a paso los marcos de las puertas de un automóvil, para reemplazar los altavoces que vienen de serie en este; fabricaremos unos  soportes para los nuevos altavoces y finalmente procederemos al montaje de la puerta

Los nuevos altavoces de vías separadas, que irán colocados en las puertas delanteras son de marca Alpine modelo SXE-1750Stienen una potencia de 280 w peak y 45 w RMS.

Los altavoces coaxiales, que irán colocados en las puertas traseras tambien de la marca Alpine modelo SPG-17C2 tienen una potencia de 240 w peak y 60 w RMS

2.- Video tutorial

3.- Otros conceptos que también debes saber

Con los altavoces de vías separadas, se obtiene una calidad de sonido superior a los coaxiales, debido a que cada vía reproduce su correspondiente rango de frecuencia y el altavoz de la vía de agudos se orienta de forma que apunte directamente al oyente, esto hace que los agudos se escuchen más cristalinos.

 

Aclaraciones

Altavoz coaxial: Sistema que comprende dos altavoces generalmente montados sobre el mismo eje de radiación. Lo suelen formar  un altavoz de graves y otro de agudos
Watts Peak : o potencia de pico, es la potencia máxima que soporta un altavoz en periodos muy cortos de tiempo.

Watts RMS: o potencia eficaz, es la potencia “real” que  soporta el altavoz de forma continuada.

 

4.- Conclusión

Debido a que la radio original del coche no tenía ninguna entrada auxiliar para conectores jack o usb, se le instaló  una radio Pioneer, la cual tiene más  potencia de salida, esto ha obligado a cambiar todos los altavoces para soportar la potencia máxima de esta nueva radio.

Un saludo.

unnamed-min copiaMmokia Technology

Jose Fco. Rodríguez Vilar

Alumno de 2º de Sistemas de Telecomunicación e Informáticos – SALESIANOS – Cartagena

Colaborador de EL CAJÓN DEL ELECTRÓNICO

Revisión técnica:  leandrogg68

 

 

 

7,806 total views, 4 views today

AUTORRADIO


Indice:

1.- El Autorradio, ¿qué es?

2.- Vídeo Práctica: Instalación de un Autorradio con una etapa de potencia

3.- El Autorradio, lo que también debes saber

  • El conector ISO
  • Fusibles
  • Cables
  • Altavoces

4.- Conclusión

————– + ————-

1.- El Autorradio, ¿qué es?

Un autorradio es la unidad principal en una instalación de sonido en un vehículo, se encargará de reproducir y amplificar el sonido enviado a los altavoces.

Su instalación, a nivel de alimentación se realiza según el siguiente esquema:

instalación de autorradio
Figura 1: Conexión de alimentación  de autorradio (conector ISO cuerpo A)

 

2.- Vídeo Práctica: Instalación de un Autorradio con una etapa de potencia

Instalación sobre tablero de un autorradio JVC KD-R312, con filtros pasivos en las vías delanteras, una etapa de potencia doble en las traseras y un subwoofer en el maletero.
También se explica el funcionamiento de otra etapa de potencia adicional más simple.

3.- El Autorradio, lo que también debes saber

3.1.-  ISO 10487

Actualmente casi todos los autorradios traen un conector estándar ISO 10487 (International Organization for Standardization).

conector ISO 10487
Figura 2: Conector ISO 10487, vista desde el conector hembra del autorradio o desde el lado de los cables del conector macho del vehículo

El cuerpo A se utiliza para la alimentación, el B para los altavoces y el C para diferentes dispositivos externos asociados al autorradio.

Los autorradios más avanzados pueden traer el cuerpo D, que se utiliza para la conexión de sistemas de navegación GPS.

 

Conector A (Alimentación)
  • Pin 1. SVC (Speed Controlled Volume) – rojo/amarillo :  Entrada de señal de velocidad del vehículo para controlar el volumen. La señal se toma del sistema de control de crucero o del sensor de velocidad del vehículo.
  • Pin 2. Silenciado (mute) – marrón: Elimina el sonido al poner este terminal a masa. Se conecta al manos libres
  • Pin 3. NC (no conectado): Algunos fabricantes lo utilizan para funciones extra.
  • Pin 4. Entrada 12V permanentes – amarillo: Conexión directa, a través de fusible, a la batería para mantener los ajustes de la memoria del autorradio
  • Pin 5. Salida 12V (150 mA máx) conmutados (remote) – azul o azul/blanco: Cuando se enciende el autorradio, alimenta la antena electrónica o  activa el relé de alimentación de la etapa de potencia.
  • Pin 6. Entrada 12V de iluminación – naranja/blanco o amarillo/negro: Para iluminar la pantalla al encender las luces del vehículo
  • Pin 7. Entrada 12V conmutados – rojo: Alimentación tomada después de la llave de contacto.
  • Pin 8. Masa – negro o marrón: Se conecta al negativo de la batería (chasis del vehículo).

NOTAS:

  • Los pines 1 y 3 pueden estar intercambiados en algunas marcas de vehículos
  • Los pines 4 y 7 pueden estar intercambiados en algunas marcas de vehículos
  • Algunos vehículos  Volkswagen usan el pin 5 como 12 V permanentes (pin 4), por lo que hay que hacer la modificación para conectarlo al pin 4 del autorradio
Conector B (Altavoces)
  • Pin 1. – azul : trasero derecho  ( + )
  • Pin 2. – azul/negro:  trasero derecho ( – )
  • Pin 3. – gris: delantero derecho  ( + )
  • Pin 4. – gris/negro: delantero derecho( – )
  • Pin 5. – verde : delantero izquierdo  ( + )
  • Pin 6. – verde/negro:  delantero izquierdo ( – )
  • Pin 7. – marrón: trasero izquierdo  ( + )
  • Pin 8. – marrón/negro:  trasero izquierdo( – )
altavoces en ISO B
Figura 3: Altavoces en conector ISO B

 

Conector C1 ( salidas a amplificador o ecualizador )
  • Pin 1. – salida de línea izquierda trasera
  • Pin 2. – salida de línea derecha trasera
  • Pin 3. – masa de salidas de línea
  • Pin 4. – salida de línea izquierda delantera
  • Pin 5. – salida de línea derecha delantera
  • Pin 6. – salida 12 V conmutados (máx. 150 mA)
Conector C2 ( control remoto )
  • Pin 7. – recepción de datos
  • Pin 8. – transmisión de datos
  • Pin 9. – masa (chasis)
  • Pin 10. – salida 12 V conmutados (máx. 150 mA)
  • Pin 11. – entrada de control remoto
  • Pin 12. – masa de entrada de control remoto
Conector C3 ( cargador de CD )
  • Pin 13. – entrada de datos del bus
  • Pin 14. – salida de datos del bus
  • Pin 15. – salida de 12 V permanentes hacia el cargador de CD
  • Pin 16. – salida de 12 V conmutados hacia el cargador de CD (máx. 300 mA)
  • Pin 17. – masa de la señal de datos
  • Pin 18. – masa de la señal de audio de cargador de CD
  • Pin 19. – entrada de línea izquierda del cargador de CD
  • Pin 20. – entrada de línea derecha del cargador de CD

NOTAS:

  • Los pines 1 al 5 siempre tienen estas funciones asignadas
  • El pin 6 puede usarse como salida de subwoofer en algunos autorradios
  • Los demás pines pueden cambiar según el fabricante.
Conector D ( sistemas de navegación)

Este conector sólo está presente en los equipos con sistemas de navegación por GPS, los pines son asignados por el fabricante, por lo que hay que mirar obligatoriamente el manual del equipo.

Si el autorradio o el vehículo no trae conector ISO se necesita un adaptador, en este link tenéis donde comprarlos. Si no lo encuentras en la página anterior, siempre tienes a San Google para estos menesteres :).

3.2.- Fusibles

A continuación vemos los fusibles que podremos encontrar en una instalación de un autorradio; los tres primeros, denominados fusibles de cuchilla,  estarán en la caja de fusibles o en el autorradio y los tres últimos , de mayor amperaje, se colocan cercanos a la batería. Uno de este último tipo, normalmente de lámina (ANL),  se usa para alimentar la etapa de potencia en caso de que esté instalada.

fusibles autorradio
Figura 4: Fusibles para autorradio

Otros tipos de fusibles que podemos encontrar en vehículos antiguos son: los tipo Bosh, los tipo Lucas y los tipo SAE de Cristal

fusible tipo bosh
Fusible tipo Bosch
fusible tipo Lucas
Fusible tipo Lucas
Fusible tipo SAE de cristal
Fusible tipo SAE

 

Notas:

  • A los fusibles MINI también se les llama MINI APT/APM y existe una versión del mismo
    Fusible APS
    Fusible APS

    llamada de perfil bajo, con las conexiones más cortas, denominado APS. Tienen el mismo código de color que los MINI y BLADE

  • A los fusibles BLADE también se les llama ATO/ATC/APR ( Los más usados)
  • A los fusibles MAXI también se les llama APX

 

3.3.- Cableado

Los cables usados en instalaciones de autorradio suele expresarse con el estándar americano AWG (American Wire Gauge), esta tabla da la equivalencia al sistema europeo, en  milímetros cuadrados.

equivalencias de cables AWG autorradio
Figura 5: Equivalencias de cables AWG a mm²

La elección del cable de alimentación en la instalación dependerá de la corriente que tenga que soportar el autorradio (o etapa de potencia).

Una buena forma de saber cuanto consume es comprobando el fusible que lleva el autorradio y en función de este dato entrar en la siguiente tabla por la columna “En tubo” y elegir la sección del cable.

Cables - Corriente maxima según sección
Figura 6: Sección del cable según la Corriente máxima

Para los altavoces, una sección de 1,5 mm²  está bien, normalmente las instalaciones de serie llevan 0,75 o 1 mm²

3.4.- Altavoces

Hay una gran variedad de altavoces para la instalación de un autorradio en un vehículo, pero todos pueden ser clasificados en alguno de los siguientes tipos.

Altavoz de vías separadas

El conjunto, habitualmente está compuesto por un tweeter, un altavoz de doble cono y un filtro pasivo de dos vías. Se suelen instalar para sonorizar la parte delantera del vehículo.

El tweeter se instala en la esquina salpicadero-puerta  y el de doble cono y el filtro en la puerta.

 

autorradio - altavoz de vías separadas

Altavoz de vías separadas
Altavoz de doble cono

Cubre muy bien gama de frecuencias medias

altavoz de doble cono

 Altavoz de doble cono
Altavoz de coaxial

Posee una respuesta en frecuencia más amplia que el de doble cono, puede ser elíptico y contener varias vías en un mismo altavoz, lo que amplía aún mas su respuesta en frecuencia.

autorradio - altavoz coaxial
Altavoz coaxial
Altavoz tweeter

Se utilizar para la reproducción de sonidos agudos

autorradio - altavoz tweeter
Altavoz tweeter

 

Altavoces subwoofer

Reproducen los sonidos más graves. Para mejorar su sonido se suelen instalar en una caja acústica llamada cajón de subwoofer, su ubicación típica es el maletero.

Autorradio - Altavoz subwoofer
Altavoz subwoofer

 

 

4.- Conclusión

Actualmente,  todos los vehículos traen una preinstalación de autorradio, por lo tanto instalar un autorradio es algo sencillo que cualquiera, aunque no sea un técnico electrónico, puede realizar.

En esta web podéis encontrar una amplia gama de equipamiento para la instalación de un autorradio o una etapa de potencia en un vehículo.

Espero que este post te sirva para instalar, modificar o reparar la instalación de tu autorradio.

Un Saludo.

leandrogg68

18,600 total views, 4 views today

HOME CINEMA


Indice:

1.- Home Cinema, ¿qué es?

2.- Vídeo Práctica: Instalación de un Home Cinema 5.1

3.- Home Cinema, lo que también debes saber

4.- Conclusión

————– + ————-

1.- Home Cinema, ¿qué es?

Home Cinema se entiende como una combinación de equipos electrónicos que permiten recrear en el hogar la experiencia de ver una película en el cine.

Un Home Cinema consta de los siguientes equipos:

  • Un televisor de gran pantalla ( más de 32 pulgadas) o un proyector de vídeo
  • Un Descodificador Dolby Digital/DTS con amplificación multicanal y  sus altavoces correspondientes para generar el sonido envolvente¹
  • Un reproductor como un DVD, Blue Ray o sintonizador digital de TDT, Satélite o TV por cable.
home cinema integrado
Figura 1: Home cinema integrado. El reproductor, descodificador y amplificador están en el mismo equipo

 

 

Un descodificador Dolby Digital (DD) / DTS es un equipo que permite obtener varios canales de sonido a partir de una fuente que tenga codificado el sonido en Dolby Digital o DTS, llevando incorporada la amplificación de cada canal en la mayoría de los casos.

 

 

tx_sr307
Figura 2: Descodificador Dolby Digital / DTS  Onkyo TX-SR307 (usado en la vídeo práctica)

 

2.- Vídeo Práctica: Instalación de un Home Cinema 5.1

Vídeo práctica  en la que muestro como realizar la instalación de un Home Cimena 5.1, utilizando el amplificador multicanal Onkyo TX – SR307.

3.- Home Cinema, lo que también debes saber

Hay muchos formatos de sonido envolvente desarrollados por las empresas Dolby Laboratories y Digital Theater Systems (DTS), veamos los más comunes en home cinema.

Dolby Laboratories

  • Dolby Surround (1982)

    Primer sistema de codificación de audio digital que agrega un canal llamado “envolvente” a los dos canales utilizados en el sonido estéreo (frontales izquierdo y derecho), por lo tanto posee tres canales. Este  canal se envía a dos altavoces traseros (en mono)  y da una dimensión extra al sonido. Aún recuerdo cuanto me impresionó, cuando me lo enseño un amigo en el año 1984, era un descodificador- amplificador Yamaha, ver una peli en su casa  era alucinante :).

  • Dolby  Pro Logic (1987)

    Mejora de Dolby Surround agregando un cuarto canal central para reproducir las voces de los actores.

  • Dolby  Pro Logic II (2000)

    Reconstruye artificialmente un entorno acústico 5.1¹ a partir de una fuente estéreo (2.0) o Dolby Surround (3.0/4.0/4.1). Consigue un realismo bastante aceptable teniendo en cuenta que se inventa los sonidos de los diferentes canales.

  • Dolby  Pro Logic IIx (2003)

    Reconstruye artificialmente entornos de sonido 6.1 o 7.1 a partir de una fuente estéreo (y lo hace bastante bien). Ofrece diversas configuraciones:

    • Movie para reproducir películas,
    • Music para reproducir CD de audio,
    • Game para videojuegos.
  • Dolby Digital (1992)

    También llamado 5.1, es el más usado en sistemas home cinema, su gran impulso comercial se produjo en 1995 debido a que fué el formato de audio adoptado por el DVD. Posee 6 pistas de audio  independientes.

    En equipos domésticos, se basa en la compresión de datos digitales mediante un algoritmo denominado AC3 (Audio Coding 3) que puede comprimir los flujos de audio en un factor de 10 a 12, con un índice de muestreo de 16 bits a 48 kHz y una velocidad binaria global de 384 kbit/s. Al Dolby Digital también se le denomina Dolby AC3.

    El formato Dolby Digital permite restituir el sonido en el espacio gracias a seis canales de audio independientes:

    • Un altavoz central colocado generalmente encima de la pantalla, para reproducir diálogos.
    • Dos pistas de audio para los altavoces frontales, para acentuar el contexto de sonido que proviene del altavoz central.
    • Dos canales para los altavoces posteriores, utilizados para reproducir el ruido y el sonido ambiente a fin de crear ambientación sonora.
    • Un canal para un altavoz de graves subwoofer ¹ ), para amplificar los efectos especiales como explosiones.

 

home cinema 5.1 - altavoces
Figura 3: Disposición de altavoces en Home Cinema 5.1

 

  • Dolby Digital EX

    Añade un canal al 5.1 (6.1) que se coloca entre los dos traseros, a fin de rellenar de sonido el espacio que existe detrás del oyente.  Un  descodificador Dolby Digital 5.1 lo consigue leer aunque se pierda la información de un canal.

  • Dolby Headphone (2001)

    Proporciona sonido envolvente en auriculares normales a partir de una fuente estéreo (aplicando la tecnología Dolby Prologic II), o una fuente multicanal.

    Realmente lo que hace es procesar el sonido que se envía a los auriculares, de forma que se asemeje al campo sonoro que se generaría en una sala, teniendo en cuenta todas las ondas directas emitidas por los diferentes altavoces y las reflejadas por paredes, suelo, techo y muebles.

  • Dolby Surround 7.1 (2010)

    Añade dos nuevos canales de efectos traseros al 5.1

 

home cinema 7.1 - instalación
Figura 4: Disposición de altavoces en Home Cinema 7.1

DTS

Es un estándar de codificación de sonido digital creado por Digital Theater Systems. Comparado con el Dolby Digital estándar, DTS utiliza cuatro veces menos compresión y digitaliza el sonido en 20 bits en lugar de hacerlo en 16. Por lo tanto, la calidad del sonido DTS es más alta, pero también pesa más.

Existen cuatro categorías:

  • DTS 6

    Equivalente al Dolby Digital, puede codificar, al igual que este, seis canales de sonido (estándar 5.1) pero con menor compresión, por lo que la calidad es superior, aunque poco apreciable en la práctica.

  • DTS ES

    Equivalente al Dolby Digital EX (estándar 6.1),  con menor compresión. Hay dos variantes: DTS ES Matrixposee un séptimo canal interpolado con los canales principales (canal virtualizado) y DTS ES Discrete que posee un séptimo canal independiente.

  • DTS 24/96

    Para música en alta definición (24 bits a 96 kHz) tanto en estéreo como en 5.1. Este formato se utiliza principalmente en los DVD de audio, o en las pistas de audio que acompañan los DVD de video. El equipo que he utilizado en la vídeo práctica (Onkyo TX – SR307) lo incorpora.

  •  DTS neo 6

    Equivalente al Dolby Prologic II, permite restituir el sonido envolvente desde una fuente de sonido estéreo.

     

    Aclaraciones

    Sonido envolvente: Sonido generado por 5 o 7 altavoces ubicados en diferentes puntos de la sala de reproducción que proporcionan un sonido que da la sensación al espectador de  estar en el centro de la escena que se está visualizando en la televisión.

    Entorno acústico 5.1: Los números 5.1 indican que se utilizarán 5 canales normales mas 1  de baja frecuencia que se conectará a un altavoz de subwoofer. Si fuera, por ejemplo, 2.0 estaríamos hablando de un entorno estereo normal, sin subwoofer.

    Subwoofer: Es un altavoz autoamplificado que refuerza los sonidos de baja frecuencia (graves). Posee un control de nivel en el propio altavoz y algunos además permiten ajustar su frecuencia de corte. Su ubicación no es crítica ya que su sonido es omnidireccional pero se aconseja colocarlo en una esquina o entre el altavoz central y uno de los laterales (a veces la decisión la toma nuestra esposa 🙂 )

    subwoofer audioengine s8

    subwoofer
    Figura 5: Subwoofer de sistema Home Cinema

     

    4.- Conclusión

    Lo mejor para disfrutar del Home Cinema es disponer de un amplificador descodificador que incorpore los códices de Dolby Digital y DTS.

    Tanto en Dolby Digital como en DTS vamos a tener perfiles de alta calidad muy similares, por ejemplo el AC3 640 (640 kbps) y de DTS 1.5M (1599kbps), tienen una calidad similar pesando la mitad el AC3 640.

    AC3 es más compatible. Si tu reproductor es un poco antiguo es más fácil que sea capaz de reproducir AC3.

    AC3 y DTS son formatos con compresión y por tanto  con pérdidas, hay formatos avanzados de cada uno sin pérdidas como el TrueHD y DTS-HD respectivamente. El más extendido el DTS-HD.

    Si el presupuesto no da para un amplificador-descodificador  como el de la vídeo práctica que os he presentado, siempre se puede utilizar un sistema home cinema integrado como el de la figura 1, que saldría a la mitad o a 1/3 del precio del anterior. También se puede hacer con una tarjeta 5.1 conectada al PC mediante USB, ahorrándote el reproductor, pero necesitarás comprar el kit de altavoces, no obstante esta opción también es más económica.

    Bueno, que disfrutes de tus pelis en tu Home Cinema.

    Un Saludo.

    leandrogg68

 

10,087 total views, 4 views today

ECUALIZACIÓN


ecualización
Indice:

1.- Ecualización, ¿qué es?

2.- Vídeo Práctica: Ecualización de una Sala

3.- Ecualización de una Sala, lo que también debes saber

4.- Conclusión

————– + ————-

1.- Ecualización, ¿qué es?

La ecualización consiste en modificar la amplitud de la señal de sonido en determinadas frecuencias para conseguir que el sonido sea más real o se adapte a las preferencias del oyente.

La ecualización  se realiza tras la instalación de cualquier sistema de sonido en una ubicación : auditorios, salas de conciertos, discotecas, pub, cines, etc; es necesaria debido a que cuando sonorizamos un recinto, se produce un campo sonoro¹ ligado a las características constructivas del mismo y se generan realces y atenuaciones de determinadas bandas de frecuencia que modifican el sonido original.

campo sonoro en auditorio
Figura 1: Campo sonoro de un Auditorio

La ecualización  compensa las  variaciones de nivel en determinadas frecuencias que aparecen al crearse el campo sonoro y se puede hacer de dos formas:

1ª.- Mediante colocación de los elementos físicos:

  • Colocación de materiales porosos  como yesos, lanas de vidrio, lanas de roca, fieltros, etc; su absorción acústica varía con la frecuencia del sonido teniendo mayor coeficiente de absorción¹ en las frecuencias agudas. Si el material es más poroso y mas grueso aumenta el coeficiente de absorción en  frecuencias mas bajas, no obstante su campo de utilización es en la absorción de sonidos medios y agudos (> 700 Hz)
materiales porosos
Figura 2: Coeficiente de absorción de materiales porosos
espumas material poroso
Figura 3: Esponja piramidal (como la instalada en el plató de TV de nuestro centro educativo)

 

  • Colocación de placas vibrantes. Suelen ser paneles de madera (contrachapada), apoyados sobre bastidores a una determinada distancia de la pared. El mayor problema que presenta este sistema es su selectividad en las frecuencias (entre 200 y 700 Hz), que puede ser atenuada colocando un material poroso en la cámara de aire.
placas vibrantes
Figura 4: Placas vibrantes colgadas de techo y fijadas a pared
  • Colocando paneles resonadores (resonadores de Helmholtz) con los que se realiza una absorción selectiva. Consisten  en un receptáculo en forma de celda, que separa el aire del resto a través de un pequeño cuello. Las frecuencias para las que se suele utilizar están en el rango de unos 200 a 4000 Hz.
paneles resonadores
Figura 5: Panel resonador

 

2ª.- Mediante equipos electrónicos:  Ecualizador gráfico (lo más usual), ecualizador paramétrico¹ (complementa al ecualizador gráfico) y ecualizador paragráfico (mezcla de gráfico y paramétrico)

2.- Vídeo Práctica: Ecualización de una Sala

En este video realizo la ecualización del plató de televisión de mi centro educativo. Utilizo un  sistema de sonido triamplificado con un ecualizador Behringer Ultragraph pro FBQ 3102, un filtro activo Behringer CX 3400 y etapas de potencia DAS E2,E4 y E8.

Tras realizar esta práctica mis alumnos de 2º de Sistemas de Telecomunicaciones e Informáticos, en la asignatura de Sistemas de Producción Audiovisual, destaco el buen trabajo realizado por este grupo:  Curso 17 18

 

3.- Ecualización de una sala, lo que también debes saber

Tras aplicar ruido rosa¹ a una sala, y mediante un analizador de espectro de sonido, se puede obtener la curva de respuesta en frecuencia  (color negro en la figura 6); se aprecia que hay una serie de ondulaciones (picos y valles) que aparecen debido al campo sonoro creado en la sala.

ecualización - ecualizador paragráfico
Figura 6: Modificación de curva de respuesta en frecuencia con un ecualizador

Lo que se pretende  es contrarestar esta variaciones, de forma que podamos obtener una curva como la de color púrpura (curva corregida) lo más plana posible.

Es este ejemplo se ha utilizado un ecualizador paragráfico que nos permite ajustar la frecuencia central del cada uno de los cortes dentro de un rango (potenciómetro ubicado bajo cada corte) no obstante lo habitual es usar un ecualizador gráfico de 1/3 de octava y en la mayoría de las veces es suficiente; de no ser así, se añade un ecualizador paramétrico que permite hacer las correcciones con más precisión.

No debemos obsesionarnos con lo plana que quede la curva, una variación de ±2dB no es apreciable y si lo que estamos ecualizando es una sala donde sólo se reproducirá voz una variación de ±5dB en el rango de 100 Hz a 10.000 Hz tampoco será apreciable.

Para conseguir una buena ecualización, primero se debe reducir el tiempo de reverberación¹ de la sala, es decir, reducir las reflexiones al máximo, esto se consigue con la colocación de materiales absorbentes del sonido.

Los ecualizadores, por tanto, se utilizan para retocar los desajustes en el campo sonoro que no puedan realizarse con elementos absorbentes y conseguir finalmente una respuesta en frecuencia lo mas plana posible.

A nivel doméstico,  puedes realizar la ecualización de tu habitación o estudio, sólo necesitarías un ecualizador, un micrófono, un teléfono móvil y un ordenador:

1º.- Descargas una pista de ruido rosa y lo guardas el móvil; mejor que sea en formato .wav, ya que el .mp3 pierde calidad.

2º.- Instalas un analizador de spectro de audio en tu pc, hay muchos gratuitos en internet,los llaman visualizadores de música (son las típicas barritas que suben y bajan con el audio).

3º.- Conectas un micro, que tenga la respuesta en frecuencia lo mas plana posible, a la entrada de micro (o USB) de tu PC y compruebas que al hablar suben y bajas las barritas del analizador de espectro.

4º.- Conectas tu móvil en la entrada del ecualizador y la salida de éste, al  amplificador (o altavoces autoamplificados) que tengas para reproducir la música.

5º.- Reproduces el ruido rosa de tu móvil y visualizas los niveles en el analizador del PC.

6º.- Modificas los cortes del ecualizador para que la curva de respuesta en el analizador quede los más plana posible.

7º.- Listo, ya lo tienes, sólo debes conectar el reproductor de música  (móvil, mp3, pc) a la entrada del ecualizador.

Si vas a reproducir siempre con el PC, puedes ahorrarte el ecualizador, usando uno tipo software, todo el proceso sería igual con las únicas diferencias:

  • La salida de audio del PC iría conectada al amplificador o altavoces autoamplificados
  • El móvil ya no hace falta para nada, se reproduce el ruido rosa con el PC
  • Para el analizador de espectro es mejor que utilices otro PC ( un portátil por ejemplo) ya que puedes tener problemas al reproducir el ruido rosa y visualizar los niveles captados por el micro en el mismo PC, si lo consigues hacer, pues perfecto, con un solo PC te apañas :).

 

Aclaraciones

Campo sonoro: es la composición de sonidos que se crea en una sala tras   las reflexiones en paredes, techo, suelo y objetos de la misma. Dependiendo de si la sala es más o menos absorbente del sonido tendrá una componente mayor de campo directo ( más ondas directas)  o de campo reverberante (mas ondas reflejadas).

Coeficiente de absorción: es un número entre 0 y 1 que indica en qué porcentaje un material absorbe el sonido ( 1 sería  el 100%).  Se obtiene con el cociente entre la Energia  absorbida y la incidente.

coeficiente de absorción
Figura 7 :Distribución de energía sonora incidente (Ei) en un material

 

Ecualizador paramétrico: es un equipo que permite ajustar el nivel (volumen) de un rango de frecuencias (banda) determinado. Posee tres ajustes principales:

  • Frecuencia: para seleccionar la frecuencia central de la banda.
  • Q (factor Q): que permite ajustar el ancho de la banda (selectividad) a modificar.
  • Nivel: realza o atenúa la banda seleccionada.
ecualizador paramétrico
Figura 8: Ecualizador paramétrico

Ruido rosa: es un sonido que contiene todas las frecuencias de espectro audible desde 20 a 20.000Hz y el nivel de potencia por octava ( o tercio de octava ) es el mismo. Como la mayoría de los analizadores de espectro realizan la medida de nivel por octava (o tercio de octava), la curva de respuesta en frecuencia del ruido rosa aparece plana.

No debemos confundir este sonido con el Ruido Blanco que contiene también todo el espectro de audible pero el nivel potencia de cada uno de los tonos (frecuencias) es el mismo.

ruidos rosa y blanco
Figura 9 : Ruido rosa (izquierda) y ruido blanco (derecha)

Tiempo de reverberación: Es el tiempo que tarda en disminuir el sonido 60 dB tras dejar ser emitido por la fuente.

Tiempo-de-reverberación-t60
Figura 10 : Tiempo de reverberación

 

4.- Conclusión

Saber ecualizar una sala es fundamental para cualquier técnico de sonido; toda instalación profesional de sonido  finaliza con una ecualización. La calidad del sonido que se obtiene tras la ecualización es muy superior a cuando no se ha realizado.

Un Saludo.

leandrogg68

GuardarGuardar

GuardarGuardar

7,780 total views, 2 views today

AMPLIFICADOR


Indice:

1.- El Amplificador profesional o etapa de potencia, ¿qué es?

2.- Vídeo Práctica: Configuración de un Amplificador profesional o Etapa de potencia

3.- El Amplificador profesional, lo que también debes saber

4.- Conclusión

————– + ————-

1.- El Amplificador profesional, ¿qué es?

Un Amplificador profesional o Etapa de Potencia, es un equipo de sonido cuya función es aumentar la potencia (tensión e intensidad) de la señal de audio.

Etapa-de-potencia-qsc-usa-400
Figura 1: Amplificador profesional (Etapa de potencia)  QSC USA 400

Un amplificador profesional o etapa de potencia se diferencia de un amplificador doméstico en que el primero es más simple, apenas tiene controles o selectores, pero a cambio entrega mucha potencia ( a partir de 100 vatios) y tiene sistemas de refrigeración que le permiten funcionar a potencia máxima durante muchas horas. En el amplificador profesional lo que se busca es potencia y estabilidad , a veces en detrimento de la calidad.

Un amplificador doméstico tanto Hi-Fi¹ como High-End¹ posee más entradas (phono, radio, micro,auxiliar, CD, etc) , un selector de entradas, corrector de tono¹, unos 100 W de potencia máxima y otras funciones adicionales. Su características relativas al ruido  suelen ser mejores que las de los amplificadores profesionales.

Amplificador-Hi-Fi
Figura 2: Frontal de amplificador doméstico  Hi-Fi
Esquema de bloques de un amplificador
Figura 3: Esquema de bloques de un amplificador doméstico (Sistemas de RTV – Emilio Felix Molero- Ed. Mc. Graw Hill )

En la figura 3 vemos como un amplificador doméstico contiene un bloque llamado amplificador de potencia, realmente es una etapa de potencia con un máximo de 100 vatios.

2.- Vídeo Práctica: Configuración de un Amplificador profesional o Etapa de Potencia

Configuración de una etapa de potencia QSC USA 400, donde muestro los modos de funcionamiento stereo, paralelo y puente mono. Además explico como se puede conseguir el modo paralelo en una etapa de potencia DAS E2 que no posee microswitch  de configuración.

 

Tras realizar esta práctica mis alumnos de 2º de Sistemas de Telecomunicaciones e Informáticos, en la asignatura de Sistemas de Producción Audiovisual, destaco el buen trabajo realizado por este grupo:  Curso 17 18

 

3.- El Amplificador profesional o Etapa de Potencia, lo que también debes saber

Veamos las características que debemos conocer en un amplificador profesional, tomaré como ejemplo el QSC USA 400 usado en la vídeo práctica.

característica qsc usa 400
Figura 4: Caraterísticas de la etapa de potencia QSC USA 400

Potencia de salida  (output power):    El fabricante nos da tres valores de potencia eficaz (RMS)¹ para un altavoz de 8 ohmios:

  • 110 W para el estándar FTC¹, siendo este el más restrictivo
  • 125 W para el estándar EIA¹, equipos con menos calidad
  • 400 W para el modo puente mono¹ (bridged mono), en las mismas condiciones  que EIA pero haciendo trabajar los dos canales del amplificador como uno solo.

Dynamic Headroom:  expresa, en decibelios, la razón entre la potencia de salida máxima que un amplificador puede producir en cortos períodos de tiempo (décimas o algún segundo) y la potencia RMS.

En el QSC USA 400 es de 1,9 dB lo que indica que la potencia máxima puede alcanzar casi el doble de la RMS (el doble serían 3 dB).

Distorsión:  Hay dos tipos de distorsión a tener en cuenta en un amplificador: Distorsión armónica Total (THD)¹ y distorsión por InterModulación (IM)¹ , en nuestro amplificador el fabricante da la distorsión por  intermodulación indicando que es menor del 0,1 % según el estándar de medida establecido por la SMPTE (Society of Motion Picture Televisión Engineers), es un buen valor. En el caso que nos hubiera dado la distorsión THD también debería ser menor de 0,1% para un amplificador profesional como este.

Respuesta en frecuencia: indica la variación de la amplificación respecto a la frecuencia. En el QSC USA 400 se da de dos formas:

  • 20 Hz – 20 KHz ±0,1dB  -> se mantiene constante la amplificación en este rango de frecuencia con solo una variación de ±0,1dB, ciertamente está muy bien.
  • 8 Hz – 60 KHz  -3dB      -> al ampliar el rango de frecuencia se amplia la variación, indicando que en 8 Hz y 60 KHz decae 3 dB. Esto es un valor normal. El que se amplíe el rango de frecuencia por encima de 20 KHz (límite audible humano) es para reducir el THD, ya que a estas frecuencia tan elevadas hay armónicos que deben ser amplificados para que no se modifique el timbre¹ del sonido original.

Factor Damping o  de amortiguamiento: es el cociente entre la impedancia del altavoz conectado al amplificador y la impedancia de salida de la etapa de potencia (décimas de ohmio).

Este factor establece la capacidad del amplificador de frenar al altavoz cuando cesa la señal aplicada, de forma que no se quede vibrando a su frecuencia de resonancia. Un valor 100 está bien, cuanto mayor sea mejor, pero más de 300 podría implicar problemas en la etapa de potencia, ya que podrían saltar las protecciones por sobre tensión de la misma (detección de cargas inductivas).

Relación señal/ruido: Relación entre el nivel de  señal máxima sin distorsionar y el ruido de fondo generado por el amplificador:

S/N  =  20 * log (Señal máx.  / ruido)

105 dB es un buen valor, en Hi-End se obtienen valores  de 115 o 120 dB.

Sensibilidad de entrada: es el nivel de tensión eficaz (VRMS) que se necesita aplicar en la entrada del amplificador para obtener la potencia máxima (nominal) en la salida, manteniendo los controles de nivel de entrada (potenciómetros) al máximo.

El valor que nos da el fabricante en nuestro ejemplo es de 1,2V con un altavoz de 8 ohmios, como le apliquemos más de 1,2V, saltarán las protecciones térmicas.

Impedancia de entrada: Es la carga que ofrece el amplificador al mezclador. Debe ser de al menos 10 KΩ, de forma que si se necesita que un mezclador excite, digamos, a 10 amplificadores en paralelo (algo frecuente en instalaciones de megafonía), la carga total será 10 KΩ / 10 = 1 KΩ que es todavía una carga cómoda para el mezclador.

 

características amplificadores DAS
Figura 5: Características de amplificadores profesionales DAS serie E

La figura 5 muestra otro ejemplo de características de amplificadores de potencia de la marca DAS, veamos algunos detalles:

  • Tienen muy buen valor de distorsión THD y de intermodulación
  • El factor damping disminuye con la impedancia de carga
  • La relación señal/ruido podría ser mejor  (92 dB)

Aclaraciones

Hi-Fi: High Fidelity o alta fidelidad, son equipos de sonido de uso doméstico, habitualmente de tipo modular que cuidan mucho sus características para ofrecer un sonido de alta calidad.

High-End: Equipos como los Hi-Fi, también para uso en el hogar, pero con una características de calidad superiores a estos. Son lo mejor y más caro del mercado doméstico, destinados a audiófilos que no les importa lo que tengan que pagar por escuchar el mejor sonido.

Corrector de tonoAjustes ubicados en el amplificador doméstico, que realzan o atenúan tanto los graves (frecuencias bajas) como los agudos (frecuencias altas), consiguiendo adecuar el sonido a las preferencias del usuario.

Potencia eficaz (RMS): la indicación RMS viene de Root Mean Square o valor cuadrático medio. Es la potencia máxima que es capaz de entregar el amplificador de forma continuada, es la que se utiliza para comparar con otros amplificadores. Algunos fabricantes, poco formales, intentan confundir aportando valores de potencia máximos o de pico, superiores al RMS que no sirven para comparar potencias ente equipos.

FTC: Estándar establecido por la Comisión Federal de Comercio, que requiere que el fabricante indique la potencia media nominal (RMS) que entrega el amplificador con ambos canales sonando a la vez, y dentro del rango de frecuencia anunciado como estándar (por lo general de 20 Hz a 20 kHz), sin superar un límite de distorsión armónica total (THD), usualmente 0.1%. También deben cumplir con una cierta desviación máxima de fase eléctrica y mantener acotado el ruido de fondo en un nivel especificado.

EIA: Estándar establecido por la Asociación de Industrias Electrónicas, refleja la potencia de salida de un solo canal sonando en una banda de frecuencias medias, por lo general de 1 kHz, con 1% de distorsión armónica total (THD). Esta norma infla la potencia  entre 10 y 20% más que el estándar FTC.

Modo puente mono: es una configuración de la etapa de potencia en la que se hace trabajar a los dos canales como si de uno sólo se tratara. Se consigue una gran potencia, más que la suma de ambos canales y se conecta un único altavoz, generalmente entre las bornas positivas de ambos canales.

Distorsión armónica Total (THD): La forma de la onda entregada por un amplificador difiere ligeramente de la aplicada a la entrada, esto es debido a que el amplificador modifica su timbre¹ (nivel de sus armónicos). La distorsión armónica total mide, en % , esta variación. Un valor menor de 0.1 % está bien para un amplificador profesional. Para amplificadores Hi-Fi  y Hi-End se manejan valores inferiores a 0,05 % .

Distorsión por Intermodulación (IM): Si introducimos en un amplificador dos tonos puros (ondas senoidales) de frecuencias f1=1000 y f2=100Hz en la salida tendremos estos tonos y además los armónicos suma y diferencia, es decir:

f1, f2, f1+f2,  f1-f2 , 2(f1+f2),  2(f1-f2), 3(f1+f2),  3(f1-f2), …

La distorsión por intermodulación mide en % el nivel de estos productos de modulación, tomando como referencia el nivel de los tonos f1 y f2. Un valor menor de 0.1 % está bien para un amplificador profesional.

Timbre: Cualquier  sonido de frecuencia f1 puede descomponerse en una serie de tonos puros (ondas senoidales) con frecuencia múltiplo del sonido original  (f1, 2f1, 3f1, etc.), a estos tonos se les llama armónicos, y la suma de todos ellos define el timbre de ese sonido.

4.- Conclusión

Para adquirir un amplificador, posiblemente el parámetro menos importante sea la potencia del mismo, hay que mirar con lupa todos los parámetros que hemos visto en este artículo, comparar y luego decidir.

No todas las etapas de potencia disponen de configuración de modo puente y modo paralelo ; el modo paralelo puede conseguirse mediante conexiones externas, pero es muy conveniente que la etapa tenga las entradas duplicadas. El modo puente (bridge) es interno, y no puede conseguirse con cableado.

Recordad que el amplificador y su pareja la caja acústica deben estar bien compaginados para dar el mejor sonido. La impedancia de la caja acústica no debe ser menor que la que recomienda el fabricante del amplificador y la potencia eficaz (RMS) de la caja acústica debe ser un 20 % superior a la potencia eficaz del amplificador.

Un Saludo.

leandrogg68

GuardarGuardar

9,929 total views, 2 views today

FILTRO PASIVO


Indice:

1.- Filtro Pasivo, ¿qué es?

2.- Vídeo Práctica: Funcionamiento de un Filtro Pasivo

3.- Filtro Pasivo, lo que también debes saber

4.- Conclusión

————– + ————-

1.- Filtro Pasivo, ¿qué es?

Un filtro pasivo es un circuito electrónico compuesto de resistencias, bobinas y condensadores (componentes electrónicos pasivos) cuya misión es dividir el sonido en varias bandas de frecuencia, como graves, medios y agudos para después aplicarlas a sus correspondientes altavoces.

Viene  en el interior de la caja acústica, o externo si es para instalaciones de sonido en vehículos.

Filtro pasivo en caja acústica reducido
Figura 1: Filtro pasivo interno en la tapa de una caja acústica.

2.- Vídeo Práctica: Funcionamiento de un  Filtro Pasivo

Vídeo en el que realizo el montaje de dos filtros pasivos, uno de 2 vías y otro de 3. Se visualiza la curva de respuesta en frecuencia de cada vía en un analizador de espectro de audio (RTA) Behringer  Ultracurve DSP 8024

Hay veces que el trabajo de los alumnos alcanza  la excelencia, este vídeo es un ejemplo de ello. Este grupo de alumnos de 2º de Sistemas de Telecomunicación e Informáticos del centro de Formación Profesional Salesianos – Cartagena ha realizado el siguiente video informe de esta práctica, rozando la perfección:

 

3.-  Filtro Pasivo, lo que también debes saber

Un filtro pasivo recibe la señal de la Etapa de potencia, por lo que ya está amplificada, al contrario de lo que sucede con un filtro activo el cual recibe una señal de bajo nivel (nivel de línea¹) de la mesa de mezclas. La entrada del filtro siempre va conectada al +1 y -1 del conector speakon, por tanto los terminales +2 y -2 de dicho conector quedan sin conectar.

Filtro pasivo pf115 cenital-reducida
Figura 2: Filtro pasivo de caja acústica DAS PF 115 usado en la vídeo práctica

¡ Ojo !  tanto las entradas, como las salidas (vías) del filtro pasivo tienen polaridad (positivo y negativo) que se debe respetar al conectar  los altavoces o el conector speakon.

Algunos filtros pasivos, como el mostrado en la figura 2 llevan unas lamparas de 12 voltios, como las que se colocan para iluminar las matrículas de los coches, que hacen de fusible, fundiéndose antes que la bobina de los altavoces. Es normal que cuando se aplique la potencia nominal a la caja acústica se enciendan.

Filtro pasivo de 3 vias - reducido
Figura 3: Filtro pasivo de tres vías usado en la vídeo práctica

En un filtro pasivo de tres vías como el de la figura 3, dispondremos de tres filtros básicos:

  • Filtro paso bajo para la vía de graves
  • Filtro paso banda para la vía de medios
  • Filtro paso alto para la vía de agudos

Este tipo de filtro pasivo, como los de las figuras 1, 2 y 3  es de primer orden¹. Uno de  segundo orden llevaría mas componentes electrónicos. Cuando deseamos un filtro de 2º orden o superior, se suele recurrir a un filtro activo.

Si  eres de los que busca nota y quieres ver como se monta un filtro pasivo de dos vías en una instalación de sonido en vehículo aquí tienes el vídeo donde lo explico (minuto 0′:50”), si sólo buscas el aprobado, ya sabes 🙂

Si no te has aburrido con el video anterior y quieres ver como va conectado un filtro pasivo en el interior de una caja acústica DAS DS 108, en este otro vídeo la destripo para enseñártelo (minuto 9′:52”).

Aclaraciones

Nivel de línea: una señal se considera que tiene un nivel de línea cuando ronda los 0 dBu que son 0,775 voltios de tensión eficaz. Equipos que entregan nivel de línea son: todo tipo de reproductores, mesas de mezclas, TV, móvil, etc, es decir todos aquellos que no sean un tocadiscos, un micrófono o una etapa de potencia.

Orden de un filtro: es la atenuación  en la salida del filtro a partir de la frecuencia de corte. Se mide en dB/octava. Un filtro de primer orden será de 6 dB/octava, uno de segundo orden: 12 dB/octava, uno de tercer orden: 18 dB/octava y así sucesivamente (saltos de 6 dB).

Orden de un filtro pasivo paso bajo
Figura 4: Orden de un filtro paso bajo

Vemos en la figura 4 como la pendiente de caída del filtro aumenta con el número de orden. Un orden superior es más deseable, pero el filtro será mas caro.

4.- Conclusión

En sonido profesional los filtros pasivos los encontraremos en el interior de las cajas acústicas  y si las vamos a utilizar en sistemas multiamplificados debemos anularlos para acceder directamente desde el conector speakon a los altavoces interiores.

Si eres un  friki del audio en vehículos también tendrás que poner filtros para que tu sonido tenga la calidad que buscas. Si tienes money pondrás un filtro activo y si no, pues varios pasivos que cuestan menos y también hacen su función. Piensa que cuando se pone un filtro activo luego hay que amplificar cada una de las vías, por lo tanto necesitas más etapas de potencia.

Un Saludo.

leandrogg68

14,709 total views, 3 views today