Orientación de Parabólica

Indice:

1.- Procedimiento para orientar una Antena Parabólica.

2.- Práctica.

3.- Antena parabólica, lo que también debes saber.

4.- Glosario.

5.- Conclusión.

————– + ————-

1.- Procedimiento para orientar una Antena Parabólica

Orientar una antena parabólica a un satélite es un proceso sencillo, pero requiere que se sigan con rigurosidad una serie de pasos. Os presento un procedimiento con el que en 10 min podemos tener la antena orientada, es el que explico a mis alumnos de Telecomunicaciones.

Vamos a orientar una antena Parabólica de tipo Offset a los satélites Astra 19,2 º E.

PROCEDIMIENTO:

  1. En la Web http://www.dishpointer.com seleccionamos el satélite “19,2ºE Astra 1KR,1L,1M,1N”  y en localización escribimos  “Av. San Juan Bosco 33 – Cartagena”. Colocamos la chincheta sobre el punto de instalación de la antena, la web nos trazará una línea de referencia para el Acimut1. Localizamos un edificio o punto geográfico conocido que esté sobre  la línea verde trazada.

Uso de dishpointer - El cajón del electrónico

  1. Entramos en la web https://es.kingofsat.net/  y en Busca de Canales escribimos “Canal Sur Andalucía” y  obtenemos:
  • Frecuencia del transponder1 :11156 Mhz -> para introducirla en el medidor de campo.
  • Polaridad1: Vertical -> para saber que alimentación aplicar al LNB1 (13 voltios)
  • Estándar1: DVB-S -> tendremos que indicarselo al medior de campo.
  • Symbol Rate1: 22000 -> lo necesitan algunos medidores de campo.
  • FEC o tasa de codificación1: 5/6 -> lo necesitan algunos medidores de campo y es un dato que utiliza la web diesl para calcular el diámetro mínimo de la parabólica.

Uso de kingofsat - El cajón del electrónico

  1. En la web https://www.diesl.com/azimut/:
  • Localización geográfica: Poner la bandera  en Cartagena (aproximadamente).
  • Satélite: Astra 1HKLMR.
  • Codificación: FEC tomado en el punto anterior para Canal Sur Andalucía -> 5/6
  • LNB: 0,6 dB. Esto es la figura de ruido del LNB instalado en la antena.
  • Elevación: Marcar la casilla Offset, para indicar que la antena es de este tipo.

Azimut - web diesl - El cajón del electrónico

  1. De la misma web obtenemos:
  • Diámetro mínimo de plato -> para asegurarnos que es válida nuestra parabólica.
  • Polarización1 (giro del LNB) -> para saber que ángulo daremos al LNB .
  • Elevación1  -> para conocer la posición de inclinación de la parabólica.
  1. Fijar la antena a su soporte, dando un apriete suave a los tornillos de la agarradera.
  1. Tras situándose detrás de la antena, ajustar el azimut para que apunte al edificio o elemento geográfico elegido en el punto 1. Apretar un poco más la agarradera.
  1. Aflojar un poco los tornillos de la elevación e ir inclinando hacia arriba la antena hasta quede aproximadamente como en el dibujo de la web diesl. El LNB debe girarse, tras aflojar un poco su tornillo, para que quede con el ángulo que se muestra también en esta web.
  1. Conectar la salida del LNB al medidor de campo, configurándolo en modo SAT, introducimos la frecuencia del transponder que contiene al “Canal Sur Andalucía” (11156 MHz) y alimentamos el LNB con 13 V por ser la polaridad del transponder vertical y como la frecuencia de este transponder (11156 MHz) es menor de 11700 Hz (Ku Baja), NO aplicamos el tono de 22 Khz. Esto se hace sólo para la banda Ku Alta que va desde 11700 – 12750 MHz.
  1. Con la visualización en modo espectro y algo de suerte, aparecerán los diferentes transponders de los satélites en esta posición orbital, si no es así, que es lo más normal,  modificamos la elevación hasta que aparezcan. Debemos asegurarnos de que el azimut lo hemos ajustado correctamente en el punto 6.
  1. Demodulamos el transponder y comprobamos que contiene el servicio: “canal sur Andalucía”, esto nos dará la certeza de que hemos orientado correctamente a Astra. En caso contrario toca volver al punto 6.
  1. Retocamos acimut y la elevación hasta que el nivel del canal sea máximo.
  1. Retocamos polarización del LNB hasta que el canal quede más perfilado (valles mas profundos en sus laterales) y el VBER y MER sean los mejores posibles. Un VBER < 9E-5 y un MER >11 dB. Si no se consiguen, volver a retocar ligeramente el acimut y la elevación.
  1. Apretamos abrazadera de Acimut y tornillos de elevación de forma definitiva (con moderación).

2.- Práctica.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica  Recepción Satélite   

3.- Antena parabólica, lo que también debes saber.

A continuación se muestra las bandas y sus frecuencias usadas para emisión y recepción satelital, a nosotros nos interesa la banda Ku en recepción (Downlink) que va desde 10700 – 12500 MHz.

Fig. : Bandas y asignación de frecuencias para satélite

Ventajas (de la banda Ku):

  • Se usa únicamente para satélite por lo que tiene menos interferencias de otros emisores.
  • Tamaño de antenas más pequeño  ya que se emite con mayor potencia (PIRE)

Inconvenientes:

  • Afectada por la atenuación de la lluvia y despolarización.
  • Pérdidas en la línea de transmisión de coaxial y del guía onda elevadas. Esto afecta sólo a los equipos de transmisión, en la recepción al convertir a Frecuencia Intermedia, no tenemos este problema.

Como podemos ver en la siguiente figura, la banda Ku se subdivide en baja y alta. Si el transponder  elegido en el medidor de campo pertenece a Ku Alta, debemos alimentar el LNB con 13 o 18 Voltios según polaridad Vertical u Horizontal y con un tono de 22 KHz que hará que  se seleccione en el LNB el oscilador local de 10,6 GHz correspondiente a esta banda.

Fig. : Espectro de frecuencia de Recepción Satélite y FI

Los transponder de la banda DBS se emiten con una potencia superior a 100 dBw lo que hace que los platos de la parabólicas puedan ser de menos diámetro. 

4.- Glosario

 Acimut: Giro horizontal de la antena parabólica. Es lo primero que debemos fijar y con exactitud.

Elevación: Giro vertical de la antena parabólica. Dependerá del tipo de antena, una offset requiere menos grados. Una vez bien fijado el acimut, la elevación nos la determinará la aparición de los canales en la pantalla del medidor de campo colocado en modo espectro.

Polarización: Es el giro que se da al LNB para que la antena receptora en el interior del LNB quede paralela con la antena emisora ubicada en el satélite, esto asegura la máxima recepción y el máximo rechazo a los canales adyacentes de la otra polaridad.

Fig. : Ajuste de polarización del LNB

Elevación: Inclinación vertical de la antena parabólica.

Frecuencia del transponder: Es la frecuencia del canal que contiene los programas de TV (servicios). Está comprendida entre 10500 y 12750 MHz. Identifica al emisor ubicado en el satélite.

Cada satélite posee varios transponder que reciben la señal de tierra, la cambian de frecuencia y la vuelven a emitir hacia tierra. A su vez cada transponder permite enviar en torno a 10 o 15 servicios (canales de televisión), y como en la misma posición orbital se ubican varios satélites del mismo operador, se consiguen transmitir cientos de canales para esa orientación.

Polaridad: Puede ser linear o circular. La más normal es la lineal que a su vez puede ser Vertical (V) u Horizontal (H). Esto sirve para indicar al LNB mediante una tensión si debe recibir los canales en Vertical (aplicándole 13 V) o los de Horizontal (aplicándole 18 V).

Algunos satélites emiten en polaridad circular en su banda DBS, en este caso puede ser a derechas o a izquierdas aunque es poco común este tipo de polaridad en TV en Europa. Con un LNB normal se puede recibir un transponder con polarización circular, pero se pierden 3 dB de potencia, para no perderlos se necesita un LNB de polarización circular.

Estándar: Estándar de transmisión, es el DVB-S para los canales en resolución estándar y DVB-S2 para los HD. Los transponders con DVB-S2 tienen una ancho de banda mayor debido a que usan la modulación 8PSK (8 símbolos) la cual tiene más rendimiento que la QPSK (4 símbolos) usada en DVB-S.

Symbol Rate: Es la velocidad de transmisión de los símbolos en Mbps (Mega bit por segundo). Un símbolo es una agrupación (palabra) de varios bits, por ejemplo en la modulación QPSK cada símbolo posee 2 bits y en la 8PSK posee 3 bits, por lo tanto QPSK posee 22 = 4 símbolos   y 8PSK  23 = 8 símbolos.

FEC: Es el ratio de codificación, es decir, indica la cantidad de bits de la transmisión que se utilizarán para corregir errores en el receptor. Por ejemplo un FEC de 5/6 indica que de 6 bits transmitidos se usarán 5 bit de datos y 1 para corrección errores. De la corrección de errores se encargan los módulos descodificadores Reed Solomon y Viterbi integrados en los receptores de satélite.

LNB (Low Noise Block): Elemento que recibe la señal del transponder  y la baja de frecuencia (Frecuencia Intermedia) para que pueda ser distribuida mediante cable coaxial.

Estructura interna de un LNB
Fig. : Estructura interna de un LNB universal (polarización lineal)

PIRE (Potencia Isótropica Radiada Equivalente): es la suma de la potencia de emisión del satélite PS  ( en dBW) y la ganancia de la antena del satélite GS  (en dB).

Fórmula matemática
Se mide en dBW :   dBW  =  10 log  W  /  1w
El dBW toma como referencia la potencia de 1 W, por lo que 0 dBW corresponde a 1W.

Si  PIRE es menor de 30 dBW se dice que el satélite es de baja potencia y si es de más de 100 dBw se considera de alta potencia, por ejemplo los transponders de la banda DBS son de alta potencia.

5.- Conclusión

Aunque los conceptos relacionados con la recepción por satélite son muchos, orientar una antena parabólica es un proceso sencillo que sólo requiere que se sigan escrupulosamente unos pasos específicos.

En este artículo he usado el procedimiento más rápido y con menos posibilidad de error en base a mi experiencia, hay muchos más métodos, por ejemplo usando un apuntador de satélite que se puede comprar por unos 20 eu, en vez de un medidor de campo, e incluso tomando una TV como medidor, metiéndose en el menú de configuración de la misma.

Yo he usado un medidor de campo ya que este  es obligatorio poseer este equipo si se es un instalador de telecomunicaciones y mis alumnos deben aprender a manejarlo ya que es lo que se van a encontrar en el mundo laboral.

Un Saludo.

LeandroGG68

GuardarGuardar

699 total views, 32 views today

VIDEO ANALOGICO y sus FORMATOS

Indice:

1.- Video analógico, qué es  y  tipos de formatos.

2.- Vídeo Prácticas.

3.- Video analógico, lo que también debes saber.

  • Sincronismos.
  • Medidas con un monitor de forma de onda.
  • Medidas con un vertorscopio.

4.- Conclusión.

————– + ————-

1.- Vídeo analógico, qué es  y  tipos de formatos.

El vídeo analógico es la imagen que se presenta sobre una pantalla de televisión y se obtiene tras aplicar una señal a un televisor trazándose líneas en la pantalla a mucha velocidad y gracias a nuestra persistencia retiniana (se mantiene la imagen en la retina durante una fracción de tiempo), conseguimos integrar las líneas y vemos imágenes completas

Tipos de Formatos

Existen cuatro tipos de señal de vídeo analógico: RGB, Componentes (YPbPr), Video-S (Y/C), Vídeo Compuesto (CVBS).

Generación de formatos de vídeo analógico
Fig. 1.Generación de formatos de vídeo analógico

RGB

Es el formato original, el que entregan las cámaras de vídeo tras captar la escena. Se usan tres componentes ( Rojo, Verde y Azul ) , ocupando un ancho de banda de 5 MHz cada canal.

Este formato se utiliza para visualización, es decir, conexión directa a monitores, no se han fabricado equipos que lo graben debido al su gran ancho de banda. Puede transmitir video con calidad HD.

Los conectores usados son:  el BNC en equipos profesionales, el VGA para proyectores y pantallas planas y el EUROCONECTOR para televisores más antiguos.

Euroconector - EL CAJON DEL ELECTRONICO
Fig. 2 . Equivalencia de pines del Euroconector y el  JP21 (equivalente Japonés)

Los equipos de fabricación Japonesa usan un conector igual al euroconector europeo pero con distinta correspondencia de sus pines.

Cuando una televisión tiene varios euroconectores, normalmente sólo uno será capaz de recibir la señal RGB, debemos identificarlo usando el manual, además debemos entrar en el menú del televisor y configurar esa entrada para señal RGB. Por defecto todas las entradas de euroconector van configuradas para vídeo compuesto que tiene menos calidad que RGB.

COMPONENTES (R-Y , B-Y , Y)

Formato obtenido del RGB mediante una matriz sumadora sin reducir apenas la calidad  pero sí el ancho de banda, pasando de 15 MHz  para RGB a 7 MHz, este se consigue eliminando la información redundante de luminosidad de las tres componentes RGB. Se transmite mediante tres líneas.

Las componentes R-Y y B-Y contienen la información de color y la componente de Y o luminancia aporta la información de luminosidad de la imagen y además contiene los sincronismos necesarios. La luminancia se obtiene de la siguiente forma:

 =  0,30 R  +  0,59 G  +  0,11 B

, G , B   = componentes de la señal RGB

Entrada/salidas para este formato las encontramos en multitud de equipos profesionales, también en las pantallas planas y proyectores. Este formato se utiliza generalmente como base para la digitalización de señales de vídeo. Puede transmitir video con calidad HD.

Los conectores usados para este formato son: el RCA en equipos domésticos y el BNC en equipos profesionales.

Conectores de señal de COMPONENTES - EL CAJON DEL ELECTRONICO
Fig. 3. Conexiones de señal de componentes

En equipos domésticos, a las las componentes R-Y y B-Y se las identifica con las palabras PR/CR y PB/CB.

Como podemos apreciar en la figura de arriba,  los equipos profesionales, usualmente, comparten los conectores BNC para la señal de RGB y la de componentes, la selección se hace mediante un conmutador.

VIDEO S (Y/C)

Posee dos componentes :  luminancia y crominancia (croma).

La señal de luminancia es la misma que en la señal de componentes.

La crominancia se obtiene modulando (modulación tipo QAM)  una subportadora de 4,43 MHz con las componentes R-Y y B-Y, este proceso implica una pérdida importante de calidad.

Para poder recomponer la información de color se necesita una muestra de la subportadora “limpia” (sin modular) consiguiendo así una referencia de la amplitud y fase originales para saber a partir de qué valor hay que comparar el nivel de tonalidad y saturación. Para ello, se añade unos ciclos de la subportadora a la señal de sincronismo después de cada barrido horizontal. Estos impulsos se conocen como Burst o Color Burst.

Los antiguos grabadores S-VHS y Hi 8 graban este formato, actualmente lo podemos encontrar como entrada de pantallas planas y proyectores, se usa un conector minidin, su resolución en el sistema PAL es de 720 x 576 píxeles (realmente tiene 625 líneas pero sólo 576 son visibles).

Conector minidin para VIDEO S - EL CAJON DEL ELECTRONICO
Fig. 4. Conector minidin para vídeo S

VIDEO COMPUESTO (CVBS)

En los equipos, este tipo de señal se suele identificar como CVBS (Color, Vídeo, Borrado y Sincronismos), se obtiene mezclando la señal de croma con la luminancia.

La croma se inserta en los huecos del espectro que no están siendo usados por la luminancia,  lo que hace que se reduzca a 5 Mhz el ancho de banda utilizado. El inconveniente es que cuando la  imagen es compleja (mucho entramado), los huecos libres de la luminanacia se reducen creando una distorsión denominada moire.

Espectro de un señal de video compuesto - EL CAJON DEL ELECTRONICO
Fig. 5. Espectro de la señal de vídeo compuesto
Distorsión de Moiré - EL CAJON DEL ELECTRONICO
Fig. 6. Distorsión de Moiré en una imagen

El vídeo compuesto se transmite con una sola línea, ideal para modular un canal de radiofrecuencia. Los emisores de vídeo analógico emiten en este formato, su resolución en el sistema PAL es de 576 x 625 píxeles.

Este formato se graba en los antiguos equipos VHS y 8 mm y su calidad es algo inferior al vídeo S.

Los conectores que se utilizan son: el BNC para equipos profesionales y el RCA (amarillo) para los domésticos.

2.- Vídeo Prácticas

2.1. –   Medida de diferentes parámetros de la señal de señal de vídeo compuesto  mediante un Osciloscopio.

2.2. –  Estudio de los formatos de vídeo analógicos: Video Compuesto, Video S y RGB. Se compara la calidad entre los mismos y se estudia la señal de sincronismo que se utiliza en RGB.

En el siguiente enlace se puede descargar las Fichas de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ellas, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica  “  Conectores y señales en equipos de vídeo  .

Enlace a  Práctica  “  Cámara de vídeo de estudio. Iluminación  “.

 

3.- Vídeo analógico, lo que también debes saber.

Sincronismos

Son señales que acompañan a todos los formatos de vídeo analógico para que el televisor pueda sincronizarse con el equipo fuente de imagen ( cámara o reproductor).

Son dos los tipos de sincronismos que se manejan: Horizontal y Vertical, estando presentes en todos los formatos de señal analógica.

Sincronismo horizontal: establece la velocidad a la que se trazan las líneas de la imagen, en el sistema PAL es de 15625 Hz.

Sincronismo Vertical: establece la velocidad a la que se muestran los grupos  de líneas que conforman una imagen o cuadro, en el sistema PAL es de 50 Hz.

Señal de video compuesto en Osciloscopio
Fig. 7. Retrazado vertical en señal de vídeo compuesto

En la señal de RGB los sincronismos pueden transmitirse de tres formas distintas:

  • Sincronismos separados (RGBHV): hay una línea para el sincronismo horizontal HSync y otra  para el sincronismo vertical VSync. Se necesitan 5 hilos para la transmisión, un ejemplo es la señal RGB que se lleva desde un ordenador a un monitor mediante cable VGA
Conector VGA - EL CAJON DEL ELECTRONICO
Fig. 8. Conector VGA.
  • Sincronismo compuesto (RGBS): Se transmite el sincronismo horizontal y vertical por un mismo cable, se necesitan por tanto un total de 4 hilos para la transmisión.
  • Sincronismo en verde (RGsB): La información del sincronismo horizontal y vertical se transmite junto con la señal de color verde, necesitándose sólo 3 hilos para la transmisión.

En la siguiente figura vemos como es posible seleccionar si el sincronismo se introduce en el verde o no, también permite cambiar la polaridad de los sincronismos, lo normal es que sean negativos (almenas hacia abajo).

Generador de Vídeo - EL CAJON DEL ELECTRONICO
Fig. 9. Generador de vídeo Promax GV 698 (utilizado en la vídeo práctica)

En los formatos Componentes, Vídeo S y Vídeo compuesto, al poseer la luminancia,  esta es la que contiene los sincronismos horizontal y vertical.

Medidas con monitor de forma de onda.

Con un monitor de forma de onda o un osciloscopio podemos medir los valores de tensión y tiempo de la señal de vídeo para asegurarnos que se ajustan a su valor normalizado.

Cuando se analiza una señal de vídeo analógico se  hace a partir de una imagen patrón llamada barras de color. Una línea en el formato vídeo compuesto tendría la forma y medidas  que se muestran en la siguiente figura:

Línea de TV - EL CAJON DEL ELECTRONICO
Fig. 10. Valores standard de Línea de TV en formato vídeo compuesto

Hay que destacar:

1º. La tensión pico a pico (Vpp) medida entre la base del sincronismo y el nivel de blanco (barra blanca) es de 1 voltio.

2º. La barras de color están ordenadas de forma que tienen un valor de luminancia descendente

3º. En el pórtico posterior se inserta la ráfaga de sincronismo de color o BURST, que permite al televisor demodular la información de color de cada línea.

4º. La información de color (croma) aparece en la figura en color gris, esta es la señal modulada en QAM (modulación en amplitud y fase), cuanto mayor sea su amplitud mayor será la saturación del color.

En la siguiente figura se aprecia como se van obteniendo los diferentes formatos de vídeo analógico a partir de la señal de RGB.

Línea de TV en todos los formatos - EL CAJON DEL ELECTRONICO
Fig. 11. Línea de TV en todos los formatos de vídeo analógico

Medidas con un vertorscopio

Este equipo nos permite comprobar la colorimetría de la imagen, tras aplicarle una imagen  de barras de color (imagen patrón), nos mostrará una serie de puntos correspondientes a cada color. Realmente lo que se representa  es la componente B-Y en el eje horizontal y la R-Y en el vertical.

El equipo a medir debe generar la imagen de barras de color. En el sistema PAL el vectorscopio nos mostrará 12 puntos (6 en el sistema NTSC), estos puntos definen la tonalidad y saturación de cada color.

Cada color se identifica con sus siglas en mayúscula y en minúscula, por ejemplo el  Magenta: MG y mg, esto es debido a que en el sistema PAL, se invierte cada dos líneas el componente R-Y, esto no sucede con el sistema NTSC. Esta propiedad del sistema PAL hace que sea más inmune a las interferencias por reflexiones de la señal cuando se transmite por radiofrecuencia.

Vertorscopio - EL CAJON DEL ELECTRONICO

Fig. 12. Retícula de un vectorscopio para sistema PAL.

Monitor de forma de onda - vectorscopio - EL CAJÓN DEL ELECTRONICO
Fig. 13. Monitor de forma de onda – vectorscopio con vídeo compuesto en sistema PAL.

Las líneas que aparecen uniendo los diferentes puntos reflejan la transición del color de una barra al color de la otra, por ejemplo la barra de color cian (CY) tiene a sus lados la verde (G) y la amarilla (YL), por este motivo el punto CY está enlazado con el YL y el G. Esta transición realmente es un cambio de fase (tonalidad) y amplitud (saturación de color) de la subportadora de color (onda senoidal de 4,43 Mhz).

Procedimiento de uso un vectorscopio:

Este vídeo aclara muchos conceptos referentes al uso del vectorscopio:

Veámoslo ahora pasito a pasito:

1.- En una entrada del vectorscopio, introducimos la señal de barras de color generada en el  equipo fuente a medir.

Conexiones de un vectorscopio Tektronix WVR 500 - EL CAJÓN DEL ELECTRÓNICO
Fig. 14. Conexiones de un vectorscopio Tektronix WVR 500

2.- Realizamos la sincronización de la señal aplicada con la retícula mostrada por el vectoscopio, para ello hacemos coincidir los segmentos que se generan con el BURST de la señal introducida con los que aparecen en la retícula, esto se hace con un potenciómetro del vectorscopio.

Fig. 15. Retícula de vectorscopio Tektronix WVR 500

3.- En el menú del vectorscopio comprobamos que el ajuste de saturación de color coincida con el de la señal aplicada, lo normal es que la saturación de color sea del 75%.

Fig. 16. Frontal de vectorscopio tektronic WVR500

4.- Comprobamos que los puntos que nos aparecen coincidan en las cajas de la retícula, esto indica que la colorimetría esta bien. Lo ideal es que los puntos queden dentro de las cajas pequeñas con lo que el error estaría acotado en un 5 % de saturación y 5º de variación de fase.

Fig. 17. Ajustes de color en un CCU SONY M5P

Como ejemplo en la figura anterior apreciamos los ajustes que nos proporciona una Unidad de Control de Cámara SONY M5P.

Notas a tener en cuenta:

  • La situación de cada punto indica la saturación y la tonalidad del color.
  • Un punto más hacia la periferia indica una saturación de color mayor.
  • Un punto con una variación de ángulo (variación de fase), indica una variación de la tonalidad del color.
  • Las cajas grandes identifican una rango variación de saturación del 20% y una variación de tonalidad de 20º.
  • Las cajas pequeñas identifican un rango de variación de saturación del 5% y una variación de tonalidad de 5º.

4.- Conclusión

Aunque estamos en la era del vídeo digital, los formatos de vídeo analógico los vamos a encontrar en casi todos los equipos de imagen, de hecho todos los formatos digitales se obtienen muestreando la señal de vídeo analógico de componentes o RGB.

Una señal de RGB y de componentes puede transmitir vídeo en HD, un ejemplo lo tenemos en la conexión de un ordenador con su monitor mediante VGA, lo que se transmite por este conector es señal RGB.

El motivo fundamental de que el vídeo analógico haya perdido la batalla frente al digital es su  acentuada pérdida de calidad al realizar sucesivas copias.

Un Saludo.

LeandroGG68

GuardarGuardar

7,625 total views, 12 views today

Emisores de Radio Frecuencia


Indice:

1.-Emisor de Radio Frecuencia (RF) ¿qué es?

2.- Vídeo Práctica. Emisor de Audio y Video de 5,8 GHz.

3.- Emisor de Radio Frecuencia (RF) , lo que también debes saber

4.- Conclusión

————– + ————-

1.- Emisor de Radio Frecuencia (RF), ¿qué es?

Un Emisor de RF es un dispositivo electrónico que permite generar una señal llamada señal modulada, que aplicada a una antena  se transmitirá a través del espacio de forma electromagnética.

La señal modulada está compuesta por una o varias ondas senoidades llamada(s) portadora(s) a las que se le modifica algún parámetro (amplitud, frecuencia o fase) en función de otra señal llamada moduladora que contiene la información a transmitir.

En la Fig. 1 se aprecia un emisor de TV analógico de apenas 10 gramos, con una potencia de 400 mW en la banda de 5,8 GHz. Puede transmitir Audio y Video en un radio que ronda el Kilómetro. Este tipo de  transmisores se utiliza en aeromodelismo para hacer FPV ( First Person View), es decir pilotar un aeromodelo viendo la imagen que este nos transmite mediante una gafas con monitores.

Emisor de 5.8 Ghz - EL CAJÓN DEL ELECTRÓNICO
Fig. 1. Emisor TV de 5.8 GHz usado en drones

Otro ejemplo de un emisor de radio frecuencia, sería el emisor de TDT ( Televisión Digital Terrestre) de la siguiente figura. Es de 5 W y permite transmitir hasta 5 programas de televisión en un canal de UHF de 8 Mhz.

Emisor de TDT comercial - EL CAJÓN DEL ELECTRÓNICO
           Fig. 2. Emisor de TDT comercial

2.- Vídeo Práctica. Emisor de Audio y Video de 5,8 GHz.

Práctica en la que realizo un enlace analógico a 5,8 GHz con un transmisor de A/V TX5200M de 0,2W y un receptor de A/V RC305.

La señal se visualiza en un monitor incluido en una maleta de FPV que además contiene medidores de nivel de señal de recepción (RSSI) y un sistema diversity para los receptores.
Se utilizan antenas de varilla y de polarización circular, apreciando las pérdidas de señal según la disposición de las mismas.

Este tipo de transmisores se puede obtener por menos de 20 euros, aquí dejo sus características.

3.- Emisor de Radio Frecuencia (RF) , lo que también debes saber

A nivel de funcionamiento,  se distinguen dos los tipos de emisores: los Homodinos y los Heterodinos

Emisor Homodino o de modulación directa

Esta formado por los siguientes bloques:

Oscilador local: Genera la una onda seonidal llamada portadora cuya frecuencia es fija, aunque algunos equipos permite su ajuste manualmente. Definirá la frecuencia del canal transmitido

Modulador: modula la señal portadora con la señal moduladora o información a transmitir. Modular es modificar uno o varios de los siguientes parámetros de la señal portadora: amplitud , frecuencia o fase. La señal moduladora, determinará la cantidad de modulación aplicada.

Amplificador: Amplifica la señal modulada obtenida a la salida del modulador.

Filtro paso banda: filtra la señal modulada, haciendo que se entregue a la antena únicamente las frecuencias del canal que se desea transmitir, de esta forma se asegura el que no se emitan señales en frecuencias  que puedan interferir en canales adyacentes.

Emisor Homodino - EL CAJÓN DEL ELECTRÓNICO
Fig. 3. Emisor Homodino

Algunas características del emisor homodino son:

  • Se emplean en frecuencias bajas, especialmente en AM.
  • Suelen ser de frecuencia fija, es decir para un solo canal, ya que en caso contrario el filtro paso banda debe ser variable, lo que los encarece y hace más complejos.
Emisor Heterodino

Es una mejora del emisor homodino, incorpora los siguientes bloques adicionales:

Mezclador: mezcla la señal modulada con otra señal senoidal generada por un segundo oscilador local  de frecuencia superior (f2) a la del primer oscilador local (f1).

Filtro paso banda 1: deja pasar únicamente una de las 4 señales que se obtiene a la salida del mezclador:

 señal del oscilador local (f2)    +     señal modulada

Del mezclador se obtienen cuatro señales:

  • señal modulada aplicada a la entrada del mezclador -> eliminada
  • señal senoidal del 2º oscilador local (f2)  -> eliminada
  • f2  + señal modulada -> pasa a la siguiente etapa
  • f2  –  señal modulada -> eliminada

Realmente lo que se hace es elevar la frecuencia de la señal modulada al rango de frecuencia en la que se va emitir el canal.

Amplificador 2: Amplifica la señal modulada, ya en el rango de frecuencia de emisión.

Filtro paso banda 2: deja pasar las mismas frecuencias que el filtro paso banda 1, solo que soporta más potencia, por tanto se realiza un segundo filtraje para evitar interferencias en canales adyacentes.

Emisor Heterodino - EL CAJÓN DEL ELECTRÓNICO
Fig. 4. Emisor Heterodino

Algunas características del emisor heterodino son:

  • La modulación se realiza sobre una frecuencia baja y fija (f1), lo que da estabilidad a este emisor y hace que los componentes electrónicos usados sean más económicos.
  • Con el oscilador local (f2), se eleva la frecuencia de la señal modulada a frecuencia de emisión, los filtros paso banda deben cambiar su frecuencia central a la misma vez que lo hace el oscilador local (f2).
  • Al amplificar la señal modulada a dos frecuencias diferentes, se producen menos interferencias dentro del emisor.

Este tipo de emisor es el mas utilizado actualmente, quedando relegado el homodino únicamente para modulaciones en AM en baja frecuencia.

4.- Conclusión

Hay muchos tipos de Emisores de radio frecuencia, es impresionante la evolución que se ha alcanzado con la reducción de tamaño de los emisores de TV, un ejemplo es el de la fig. 5, que actualmente se monta en drones de menos de 60 gramos que permiten hacer carreras en el interior de cocheras volando en primera persona (FPV).

Micro emisor de 200 mW - EL CAJÓN DEL ELECTRÓNICO
Fig. 5. Micro emisor analógico de 200 mW con cámara y antena de 4,5 gramos (menos de 30 euros)

Cuando de hablamos de equipos de emisión comercial, tanto de radio como de TV, los equipos y el precio es otra historia (fig. 6).

Equipo de emisión - EL CAJÓN DEL ELECTRÓNICO
Fig, 6. Equipo de emisión profesional en rack

En España a nivel comercial la TV se está emitiendo en Digital y la radio sigue en analógica, la radio digital (DAB) no termina de despegar.

Los emisores de TV que se están montado en los drones de carreras, que tan de moda están actualmente, son analógicos, el  motivo es el reducido peso y precio de los mismos, así como que aunque haya muchas interferencias se sigue viendo la imagen (aunque mal), cosa que no sucede con los equipos digitales que dan pantallazo negro al deteriorarse la recepción.

Os puedo asegurar que estar pilotando un dron de carreras a casi 100 Km/h en FPV y obtener una pantalla negra por deterioro de la señal es un sensación muy desagradable 🙂

Un Saludo.

leandrogg68

7,347 total views, 15 views today

RADIO FM


Indice:

1.-Radio FM, ¿qué es?

2.- Vídeo Práctica: Emisión y recepción en radio FM

3.- Radio FM, lo que también debes saber

4.- Conclusión

————– + ————-

1.- Radio FM, ¿qué es?

Un receptor de radio FM o Frecuencia Modulada es un equipo electrónico que permite sintonizar canales de radiofrecuencia (RF) para posteriormente obtener la información contenida en los mismos (proceso de demodulación¹). El sonido o señal moduladora¹, hace que varíe en frecuencia una señal  llamada  portadora¹, a esta señal portadora que varía en frecuencia al son de la señal moduladora, se le llama señal modulada¹ y es la que se transmite y recibe por la antena.

modulacion fm
Figura 1: Modulación en Frecuencia

Se puede observar en la figura 1 las diferencias entre una señal Modulada en Amplitud (AM) y otra Modulada en Frecuencia (FM), en esta última la amplitud de la portadora se mantiene constante y lo que varía es su frecuencia (ensanchamiento y estrechamiento de la onda).

Al aumentar la amplitud (volumen) de la señal moduladora (sonido), aumenta la frecuencia de la señal portadora. Como la información transmitida (sonido) no depende de la amplitud de la señal portadora hace que este tipo de modulación sea inmune al ruido electromagnético.

En la figura 2   podemos ver el ancho de banda de tres canales de una emisión de FM comercial¹. La portadora está centrada en el dial de la emisora correspondiente, aumentado y disminuyendo su frecuencia 75 KHz respecto a la frecuencia central 91,9 MHz.

Se dejan 25 KHz a ambos lados de la banda como guarda para no invadir el canal adyacente.

Ancho de banda radio FM
Figura 2: Ancho de banda de un canal de radio FM comercial

 

2.- Vídeo Práctica: Emisión y recepción en radio FM

VideoPráctica en la que se utilizan dos emisores de FM: un generador de RF PROMAX AM/FM -213B y un emisor portátil Belkin Tune Cast 3. La señal es captada por un receptor de FM doméstico y un dispositivo de Radio Definida por Software (SDR) conectado al ordenador que nos permite analizar con precisión el espectro de la señal modulada en FM

Mediante un medidor de campo TELEVES H45 se completa el estudio de la señal emitida.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica  Modulación en Frecuencia (FM)  “.

3.-  Radio FM, lo que también debes saber

El esquema de bloques básico de una radio FM dependerá de si es tipo homodino o superheterodino, estas estructuras  se explicaron en este artículo : Receptor AM

Todo lo explicado en el artículo anterior es aplicable a la radio FM con la salvedad de que el funcionamiento del detector es distinto, pues se debe obtener la información de los cambios de frecuencia de la portadora y no de los cambios de amplitud como en AM.

Si quieres profundizar un poco más, en el siguiente vídeo (minuto 5′ 17″), utilizo un medidor de espectro basado en un dispositivo SDR muy económico para analizar la señal modulada en FM emitida por un micrófono inalámbrico profesional.

La modulación en FM tiene el inconveniente frente a la de AM de que consume mucho ancho de banda en su transmisión. Como podemos observar en la siguiente figura si la moduladora es  una onda senoidal de frecuencia fm  y  la portadora  tiene la frecuencia  fc , aparecen infinitas portadoras a ambos lados de la principal ( fc ) cuyo valor de tensión va en decremento conforme se alejan. Estas portadoras serán bandas laterales en el caso de que la moduladora sea un banda de frecuencia, que será lo habitual.

Fig.3 : Espectro de una señal de FM (www.coimbraweb.com)

 

La amplitud de las portadoras Jn(x) depende del índice de modulación1 aplicado y puede conocerse en base a las funciones de Bessel  (fig. 4). Por ejemplo la curva correspondiente a Jrepresenta como varía la amplitud de la portadora central con el índice de modulación. Podemos observar como los dos primeros nulos los tiene para los índices de modulación de 2,4 y 5,5.

Se suelen despreciar las bandas con valores  de amplitud menores a 0.01, lo que hace que generalmente se tengan en cuenta sólo hasta la J5 , es decir, hasta fc – 5fm.

Fig.4 : Funciones de Bessel.

 

En la fig. 5  se exponen  todos los parámetros que intervienen en la formulación de la ecuación de la onda modulada en FM.

Fig. 5: Ecuación de la señal de FM (www.coimbraweb.com)

 

En España, en torno al  año 2000  se apostó por la emisión de radio digital DAB¹, pero no se ha conseguido implantar masivamente, actualmente son pocas las comunidades autónomas  que están emitiendo en DAB.

El problema es que los receptores de radio digital no han bajado de precio frente a los de FM analógica; un receptor DAB portátil cuesta mas de 50 euros, lo que ha llevado a que el consumidor se siga decantando por la radio FM analógica. En España tampoco se ha establecido fecha de apagón para la radio FM, por lo que seguirá estando presente durante bastantes años más.

Glosario

Banda de FM Comercial: es la denominada banda II ( de VHF), cubre  desde 87,5 a 108 MHz y es utilizada para emisoras de radio FM analógica.

Señal moduladora: Es el sonido o información que queremos transmitir. Su frecuencia es baja, de 20 a 20000 Hz.

Señal Portadora: Es una onda de forma senoidal (sinusoide) de frecuencia elevada usada para   variar su frecuencia al son de la señal moduladora.

Señal modulada:  Es es resultado de la mezcla de la señal moduladora y la señal portadora. Es lo que emite y recibe la antena, contiene por tanto la señal portadora modulada en frecuencia por la señal moduladora.

Demodulador: Circuito electrónico encargado de extraer la información (señal moduladora) de la portadora.

DAB:  Son las siglas de Digital Audio Broadcasting, en definitiva una radio digital creada con la intención de sustituir a la radio FM. En España se emite en banda III (VHF) desde 195 a 223 MHz y en banda L (UHF) desde 1450 a 1468 MHz, con canales de 1,536 Mhz, utiliza modulación QPSK (modulación digital en fase) y usa el sistema de transmisión COFDM (sistema multiportadora), el mismo que para TDT.

Sus ventajas principales frente a la emisión radio FM son:

  • transmisión de más canales en el mismo ancho de banda
  • transmisión de datos adicionales (como en el RDS actual de radio FM)
  • sintonizamos una emisora y podemos viajar por todo el país sin cambiar de sintonía
  • menos pérdidas de señal que en la radio FM: con solo 9 dB de relación señal/ruido ya se sintoniza ( en radio FM se necesitan del orden de 50 para que se escuche con calidad). Esto es debido a la robustez de la modulación QPSK sobre el sistema multiportadora COFDM.

Indice de modulación máximo en FM o relación de desviación:

índice de modulación max  =  desviación max frecuencia de  portadora  /  frecuencia max de moduladora

Cuando es menor de π / 2 se dice que la modulación es de banda angosta o estrecha y cuando es mayor de este valor se dice que es una modulación de banda ancha.

Por ejemplo, en FM comercial tenemos un desviación de la portadora de 75 kHz y un frecuencia máxima de la moduladora de 15 kHz.

Índice de modulación  =  75 / 15  = 5  como es mayor que π / 2, este tipo de modulación es FM de banda ancha, por tanto cuando el índice de modulación sea 5 para una emisión en radio FM comercial se dice que el porcentaje de modulación es del 100%

4.- Conclusión

Todas las transmisiones que radio  que requieran calidad utilizarán modulación en FM, un ejemplo lo tenemos en los micrófonos inalámbricos los cuales usan actualmente frecuencias en la banda de UHF, con anchos de banda relativamente estrechos (unos 40 KHz), pensad que el ancho de banda que se usa actualmente en una en una transmisión de FM comercial es de 150 KHz.

Desde la ley de ICT 2003, se están instalando en todos los edificios una antena para FM y otra para DAB con su correspondiente electrónica de amplificación, aunque la verdad es que la instalación de DAB no se está utilizando casi en ningún sitio.

Por último, decir que la modulación en FM genera infinitas bandas laterales equidistantes a ambos lados de la frecuencia de la portadora que van disminuyendo de amplitud según se alejan de esta, lo que obliga a colocar un filtro paso banda a la señal que se envía a la antena para evitar la interferencia en canales adyacentes.

Bueno, este tema da para un libro, me he esforzado por hacerlo accesible a nivel básico a cualquier persona, espero haberlo conseguido :).

Un Saludo.

leandrogg68

15,036 total views, 15 views today

RADIO AM


Indice:

1.-Radio AM, ¿qué es?

2.- Vídeo Práctica: Emisión y recepción en radio AM

3.- Radio AM, lo que también debes saber

4.- Conclusión

————– + ————-

1.- Radio AM, ¿qué es?

Un receptor de radio AM o Amplitud Modulada es un equipo electrónico que permite sintonizar canales de radiofrecuencia (RF) para posteriormente obtener la información contenida en los mismos (proceso de demodulación¹). El sonido o señal moduladora¹, hace que varíe en amplitud una señal de más frecuencia llamada señal portadora¹, a esta señal portadora con amplitud variable se le llama señal modulada¹ y es la que se transmite y recibe por la antena.

Radio Galena
Figura 1: Radio AM de galena

El dibujo anterior muestra cómo construir una radio  AM  muy básica, radio a galena. Veamos su funcionamiento:

  • La señal captada por la antena es introducida en un circuito formado por una bobina y un condensador en paralelo llamado circuito tanque¹.
  • El circuito tanque está sintonizado a una frecuencia que puede ser ajustada con un condensador variable. Esta frecuencia será la del canal de la emisora que deseamos recibir.
  • La señal sintonizada es aplicada a un diodo realizado con una piedra de galena (cristal semiconductor de sulfuro de plomo), esta puede ser sustituida por un diodo semiconductor de germanio como el 1N34A. En esta etapa se elimina media onda de la señal recibida y se obtiene la envolvente de la misma que corresponde al sonido transmitido.
  • Conectamos unos auriculares que tengan una impedancia superior a 2000 ohmios. Como esto es difícil de encontrar, lo que se puede hacer es conectar un transformador pequeño de los de 220 voltios a 9 o 12 voltios. Su primario (el devanado de 220 v) irá al circuito y su secundario ( devanado de 9 o 12 v) irá a unos auriculares normales (de baja impedancia).

2.- Vídeo Práctica: Emisión y recepción en radio AM

VideoPráctica donde se monta una sencilla emisora de radio AM mediante un generador de RF TRIO SG-402 con entrada de modulación de AM. La señal modulada se recibe en un receptor de AM doméstico y en un dispositivo USB SDR conectado a un ordenador en el que podemos analizar el espectro de dicha señal.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica Modulación en Amplitud (AM) “. 

 

 

3.-  Radio AM, lo que también debes saber

Según su constitución interna, hay dos tipos de receptores de radio:

  • Receptores de amplificación directa o homodinos
  • Receptores con Frecuencia Intermedia o heterodinos

Esta clasificación es válida tanto para radio AM como para radio FM.

Receptor Homodino

También se le conoce como receptor sintonizado en radiofrecuencia (RF).

Un ejemplo de este tipo de receptor es el de Galena de la figura 1, sólo que este no está equipado con etapa amplificadora ni filtro, por lo que el nivel de la señal recibida por la antena debe ser alto (del orden de 0,5 voltios).

receptor homodino
Figura 2: Receptor de radio  tipo homodino

Este tipo de receptor es poco usado debido a los siguientes inconvenientes:

  • Se necesita amplificar la señal recibida de la antena desde unos pocos microvoltios hasta el orden de 0,5 voltios (ganancia de casi un millón), por lo que se deben utilizar  varias etapas amplificadoras con su correspondiente filtro sintonizado a la frecuencia de la señal portadora. Es complejo sintonizar todas estas etapas amplificadoras simultáneamente, lo que los hace poco selectivos (dificultad a la hora de sintonizar una emisora).
  • Al requerirse amplificar en tan alto grado la señal de radio frecuencia, hace que el receptor sea propenso a la “oscilación” y se vuelve inestable (pérdida de emisoras sintonizadas).
Receptor Supeheterodino

Es más complejo que el homodino pero es el utilizado mayoritariamente debido a sus ventajas:

  • El filtrado y amplificación de la señal se hace a una frecuencia más baja que la de recepción, denominada frecuencia intermedia¹, con lo que se consigue más sensibilidad y estabilidad.
  • Los filtros están sintonizados a la frecuencia intermedia que se mantiene constante independientemente del canal sintonizado, esto hace que el receptor sea muy selectivo (facilidad para sintonizar emisoras).

En la figura 3 se puede observar el esquema de bloques de un receptor superheterodino.

La señal de antena atraviesa un filtro paso banda ajustado al canal que deseamos recibir y se introduce en un amplificador para mezclarse posteriormente con un tono puro (onda senoidal) generado en un oscilador local.

Tras el mezclador se obtienen 4 señales, dejando pasar, mediante un filtro, únicamente la correspondiente a la frecuencia intermedia (FI o IF) que es amplificada para ser aplicada a un circuito demodulador¹ obteniéndose a la salida de este la señal de audio o en Banda Base1 (BB) que se amplifica para llevarla a un altavoz.

receptor superheterodino
Figura 3: Receptor de radio tipo superheterodino con filtro de rechazo a la banda de frecuencia imagen.

En la figura 4 se observa como se obtiene la señal de frecuencia intermedia (FI), restando  la  señal generada en un oscilador local (OL) a la señal de radio frecuencia sintonizada (RF).

banda imagen
Figura 4: Obtención de la banda de frecuencia intermedia.

Si la antena captara señales de otra emisora de frecuencia igual a OL – FI, estas serían tratadas como la verdadera FI, por lo que en la salida tendríamos doble audio, el original del canal que deseamos y el de la otra emisora no deseada.

Para solucionar el problema de la banda imagen se instala un filtro paso banda más selectivo tras la antena, como se muestra en la figura 5. Este filtro va cambiando de frecuencia central de forma solidaria al cambio en la frecuencia del oscilador local (OL).

banda imagen filtrada
Figura 5: Filtro para eliminar las frecuencias de la banda imagen

Glosario

Circuito tanque: También llamado “circuito resonante paralelo”, es una conexión en paralelo de una bobina y un condensador. Tiene la propiedad de que al ser alimentado entra en resonancia, es decir, genera un señal senoidal de una frecuencia fija. Esta frecuencia (o banda de frecuencia) a la que oscila es la que se hace coincidir con la del canal que deseamos sintonizar.

Se cumple que para la frecuencia de resonancia la impedancia que ofrece dicho circuito es máxima, disminuyendo por encima y por debajo de esta frecuencia. Este es el motivo por el que se comporta como un filtro de tipo pasa banda, que elimina las frecuencias alejadas de la de resonancia y deja pasar las próximas a esta.

Frecuencia Intermedia:  es una frecuencia más baja que la recibida por la antena y se obtiene al mezclar la señal recibida por la antena  con la generada en el oscilador local. Esta mezcla genera cuatro señales:

  1. Señal  de RF: será eliminada
  2. Señal  del oscilador local: será eliminada
  3. Señal  de  RF + oscilador local: será eliminada
  4. Señal  de RF – oscilador local: frecuencia intermedia

Como ejemplo, la Frecuencia Intermedia de la radio AM comercial es de 455 KHz y la de la FM comercial es de 10,7 MHz.

Señal moduladora: Es el sonido o información que queremos transmitir. Su frecuencia es baja, en radio es de 20 a 20000 Hz.

Señal Portadora: Es una onda de forma senoidal (sinusoide) de frecuencia elevada usada para   variar su amplitud al son de la moduladora.

Señal modulada:  Es el resultado de la mezcla de la señal moduladora y la señal portadora. Es lo que emite y recibe la antena, contiene por tanto la señal portadora modulada en amplitud.

Fig. 6: Modulación AM en el dominio del tiempo y ecuaciones. Así se vería en un osciloscopio. www.coimbraweb.com.
Fig. 7: Modulación AM en el dominio de la frecuencia de un tono puro o señal senoidal, así se vería en un analizador de espectro. www.coimbraweb.com.

La fig. 7 muestra la amplitud que tienen las bandas laterales ( Am/2), esto es en el caso de que el índice de modulación sea 1, en caso de otro valor de indice de modulación la amplitud de las bandas laterales vendría dada por:

 m * ( Am/2)

m : índice de modulación

A: amplitud de la señal moduladora

 

Fig. 8: Modulación AM en el dominio de la frecuencia de una banda de frecuencia B= 3,1 kHz (señal de voz). La información de la banda lateral superior (USB) contiene la misma información que la inferior (LSB). El índice de modulación es del 100%. www.coimbraweb.com.

 

Oscilador Local: Es un circuito electrónico que genera un tono puro (onda senoidal) cuya frecuencia es algo menor  (o a veces mayor) que la frecuencia de la portadora del canal que se recibe por la antena (que sintonizamos).

Mezclador: Es el circuito encargado de mezclar el tono generado por el oscilador local con la señal procedente de la antena (señal de Radio Frecuencia o RF), con el fin de obtener la señal de frecuencia intermedia.

Demodulador: Circuito electrónico encargado de extraer la información (señal moduladora) de la portadora. En receptores de AM suele ser un diodo de germanio.

Banda Base : Es la señal que se utiliza como moduladora, en radio sería el audio. Esta señal tiene baja frecuencia, en el caso del audio va desde 20 – 20.000 Hz. En Televisión va desde 0 a 5 Mhz.

Banda de Frecuencia Imagen: Son frecuencias no deseables que pueden ser captadas por la antena y crean interferencias a la señal original.

Frecuencia Imagen     Frecuencia Oscilador Local      Frecuencia Intermedia

Se persigue, mediante un filtro instalado tras la antena, que no entren en el receptor.

Indice de modulación:

Cuando lo que se conoce son las amplitudes de la señal portadora (Ac) y la de la señal moduladora (Am), el índice de modulación (m) será:

m = Am / Ac

 

Si lo que se conoce es la señal modulada, vista en un osciloscopio, entonces:

m  =  Amax – A min / A max + A min

indice-de-modulacion
                            Figura 9 – Indice de modulación

Varía de 0 a 1, un 1 sería 100% de modulación y 0 un 0%, lo ideal es que fuera del 100% ya que de esta forma se obtiene la máxima potencia en la transmisión, pero en la práctica se reduce para asegurar el que no se produzca sobremodulación.

 

 

4.- Conclusión

Aunque la calidad de la emisión en AM no es la de FM, se sigue utilizando con regularidad debido a:

  1. Los equipos de emisión/recepción son más simples que los de FM y más baratos.
  2. El ancho de banda utilizado por canal es más estrecho.
  3. Se optimiza más la potencia, por ejemplo en emisión AM de banda lateral superior (USB), la potencia necesaria en la emisión es 1/4 de la usada en AM standard. Esto se consigue gracias a que no se transmite la portadora (50% de la potencia) ni la banda lateral inferior (25% de la potencia). Estos receptores se utilizan en radioafición y son más complejos que los de AM de la banda comercial (desde 535 a 1605 kHz).

Hay que tener en cuenta que en radio AM la información va codificada en la amplitud de la señal portadora, por lo que un rayo de una tormenta, una chispa de un motor eléctrico o de una bujía de moto, etc, van a modificar la amplitud de esta señal y por tanto introducirán un ruido,  esto no sucede en radio FM.

Por tanto, queda claro que donde busquemos calidad de sonido no se va a usar la modulación AM, pero sí en otras muchas aplicaciones que no sean tan críticas ante los ruidos.

Un Saludo.

leandrogg68

9,174 total views, 12 views today