Instalación de una antena de TDT

Indice:

1.- Procedimiento de Instalación de un sistema de captación Terrestre.

2.- Práctica.

3.- Sistema de captación Terrestre, lo que también debes saber.

4.- Conclusión.

————– + ————-

1.- Procedimiento de Instalación de un sistema de captación Terrestre.

El objetivo será instalar dos antenas de UHF para TDT y una de VHF para FM, una de las antenas UHF se orientará a un repetidor lejano (Aitana en nuestro caso), por lo que contendrá un preamplificador. Las señales de las tres antenas se mezclarán mediante un mezclador de mástil que entregará, por un único cable, los canales captados por las tres antenas.

En la siguiente figura se aprecia la disposición de las antenas y su conexión al mezclador.

Fig. : Sistema de captación TDT y FM

 

PROCEDIMIENTO:

1. Conectar un cable coaxial Televés T100 al dipolo de cada antena. Los tres cables tendrán la longitud necesaria para coincidir en su otro extremo en el mezclador, que se ubicará en la parte baja del mástil (bajo la antena de FM).

2. Fijar en el extemo del mástil la antena que vaya a ser orientada al repetidor más lejano. El cable quedará sujeto al mástil con una vuelta de cinta aislante a 40 cm por debajo de la antena.

3. Fijar  el mástil mediante  agarraderas  con un apriete suave.

4. Conectar el cable de la antena orientada a Aitana al medidor de campo, seleccionar el canal 25 (MAUT Comunidad Valenciana – Alicante) y medir el CBER, girando la antena hasta que obtengamos el mejor valor posible (valor más pequeño).

5. Apretar las agarraderas.

6. A 1 m  por debajo de la antena anterior, colocar la segunda yagi orientándola al segundo repetidor (Carrascoy). Sabremos que está bien orientada cuando en el medidor de campo obtengamos el mejor CBER para un canal de este repetidor (el 38 por ejemplo).

7. A 1 m  por debajo de la antena anterior, colocar la tercera antena de dipolo plegado para la recepción de FM. Esta no se orienta, ya que es omnidireccional.

8. Fijar el mezclador al mástil y conectar los cables de las tres antenas. Se cuidará que la antena con preamplificador se conecte a la entrada del mezclador que permita el paso de corriente, las otras dos entradas bloquean este paso.

 

2.- Práctica.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas.

 Práctica:   Recepción Terrestre

 

3.- Sistema de captación terrestre, lo que también debes saber.

En la siguiente tabla podemos ver la frecuencia de los diferentes canales de TV, tanto en analógico como en digital. Los canales analógicos se identifican por la frecuencia de su portadora de vídeo y los digitales por la frecuencia central del canal. Actualmente en España no se emiten canales de TV comercial en analógico.

Ej. :  Canal 21: de 470 – 478 MHZ   (8 MHz de ancho de banda)

En Analógico -> 471,25 MHz                   En Digital -> 474 MHZ

 

¿Cómo saber qué canales distribuir en una instalación comunitaria?

En una instalación colectiva para MATV (sistema de televisión terrestre para antenas colectivas) sólo es obligatorio, según la Ley ICT, distribuir los canales cuya Intensidad de campo sea superior a la mostrada en la siguiente tabla.

 Fig. Intensidad de campo mínima para distribuir los canales en una ICT (actualizado a Julio 2021).
Fig. Intensidad de campo mínima para distribuir los canales en una ICT (actualizado a Julio 2021 contemplando 1º y 2º dividendo digital).

Esta tabla es la que aparece en la Ley ICT de 2011, pero hay un problema: los medidores de campo nos dan el valor de la señal captada en dBuV, que es una tensión,  y no en dBuV/m (como indica la tabla) que es una intensidad de campo eléctrico.

Solución: 

V (dBuV) = E (dBuV/m) – K (dB/m)

V = Tensión entregada por el medidor de campo.

E = Intensidad de campo eléctrico medida.

K = 20 log f (MHz) – G antena (dB) – 31,54   

K es un valor que depende de la frecuencia del canal medido y de la ganancia (G) de la antena utilizada para la medición.

Ejemplo:

Calcular el nivel de señal mínimo en dBuV, para que el canal 29 de TDT sea insertado en una la instalación de ICT, sabiendo que la ganancia de la antena utilizada para la medida es de 10 dB para este canal.

Datos:
Canal 29 : su frecuencia es 538 MHz (ver en la tabla de asignación de frecuencia)
Ganancia de la antena usada (G) : 10 dB

Cálculos:
V mínima = E mínimaK =  57,61 – 13,01 = 44,60 dBuV

E mínima = 3 + 20 log 538 = 57,61 dBuV/m

K = 20 log 538 – 10 – 31,54 = 13,01

 

¿Qué nivel y calidad debe tener la señal?

La siguiente tabla muestra la calidad y nivel exigible a la señal en dos ubicaciones: antena y toma de usuario.

Observaciones:

  • Los niveles mínimos en ANTENA están obtenidos en base a la tabla anterior de Intensidad de campo eléctrico mínima requerida en MATV, solo que aquí están expresados en dBuV, que es lo que nos muestran los medidores de campo.
  • El C/N  (Relación canal/ruido) en antena es mayor que en toma ya que aún no ha pasado por amplificadores y el tramo de cable hasta la antena es corto.
  • Un C/N elevado en antena asegura que el CBER también sea bueno. 
Fig. : Nivel y calidad requerida de la señal  en antena y en la toma de usuario.

 

¿Qué antena se debe instalar?

Veámoslo con un ejemplo real.

Se desea instalar una antena en el Colegio Salesinos – Cartagena que cumpla con los requisitos mínimos de calidad en la captación de todos los canales TDT.

 

Para las medidas se dispone de una antena  Televés Yagi tipo V  ref. 1443   y un medidor de campo.

 

PROCEDIMIENTO:

1.- En la web : https://www.tdt1 buscamos nuestra comunidad autónoma y  dentro de esta nuestra zona.

2.- Consideremos que los canales extremos en la zona son  el 29 (538 Mhz) y el 47 (682 Mhz). Mediante la gráfica  de respuesta en frecuencia de nuestra antena de medida,  obtenemos la ganancia en estos canales.

Fig. : Ganancia para canales 29 y 47.

3.- Medimos con la antena de referencia que tenemos inicialmente (la yagi tipo V) y obtenemos: 49 dBuV para el canal 29 y 50 dBuV para el canal 47 (Nivel medido).

4.- Restamos al Nivel medido los dB de Ganancia de la antena de referencia para el canal correspondiente y así obtener el Nivel Real Recibido.

5.- El nivel mínimo recomendable en Antena, según la tabla anterior, es de 45 dBuV, restamos a este valor el nivel Real Recibido, obteniendo los dB mínimos que tiene que tener la antena que dejaremos de forma definitiva.

6.- Aplicamos un margen de seguridad de 3 dB  y la buscamos en el catálogo una antena con ganancia mínima de 9,3 dB en el canal 29 y 10,2 dB en el 47.

Observamos que la antena utilizada para las medidas supera los niveles de ganancia exigidos para ambos canales, por lo que se podría utilizar como antena definitiva.

En la siguiente tabla se esquematizan todos los cálculos realizados.

   Canal 29  Canal 47
Ganancia de antena de referencia (dB) 10,3 12,2
Nivel medido (dBuV) 49 50
Nivel Real Recibido (dBuV) 49 – 10,3 = 38,7 50 – 12,2 =37,8
Nivel mín. recomendable en Antena (dBuV) 45 45
Nivel recomendable – Nivel recibido (dB) 45 – 38,7 = 6,3 45 – 37,8 = 7,2
Margen de seguridad (+3 dB) 6,3 + 3 = 9,3 7,2 + 3 = 10,2

 

¿Qué  mástil a instalar?

Veámoslo con un ejemplo, deseamos saber qué mástil utilizar para la siguiente instalación. Todas las  antenas son de la marca Televés con las referencias que aparecen en la figura.

 

Fig. : Momento Flector de antenas en mástil.

PROCEDIMIENTO DE CALCULO

1.- Mediante las referencias, buscamos las características de las antenas utilizadas en el catálogo.

Fig. : Hoja de características de Antena yagi Televés ref. 1443.

 

Fig. : Hoja de características de Antena FM Televés ref. 1201

2.- El fabricante nos da dos valores de carga al viento:

a) Supuesto de que la presión del aire sea de 800 N/m2  que equivale a una velocidad de 130 Km/h.

b) Supuesto de que la presión del aire sea de 1100 N/m2  que equivale a una velocidad de 150 Km/h.

Si la antena más alta está por debajo de 20 metros respecto al suelo (nuestro caso) tomamos la carga al viento correspondiente a 130 km/h de velocidad del viento, en caso contrario se toma la de 150 km/h.

3.- Calculamos el momento flector total (MTotal) que nos servirá para determinar el tipo de mástil a instalar. Los datos están reflejados en la figura de la instalación.

MTotal = L1 x Q1  +  L2 x Q2  + L3 x Q3

MTotal = 1,5 x 27  +  2,5 x 83,5  + 3,5 x 83,5  =  541,5 N m

Con este valor entramos en la tabla siguiente por la fila M. Flector para determinar qué mástil usar. Observamos que 541,5 Nm es un valor excesivo, por lo que debemos reducirlo, tenemos varias opciones:

Fig. : Características de los mástiles de la marca Televés.

Opción 1:  bajar 1 m todas las antenas.

MTotal 1 = 0,5 x 27  +  1,5 x 83,5  + 2,5 x 83,5 =  347,5 N m

Opción 2: Redistribuir las antenas, colocando la de FM en el extremo del mástil ya que es la que menos carga al viento posee.

MTotal 2 = 1,5 x 83,5  +  2,5 x 83,5  + 3,5 x 27  =  428,5 N m

Opción 3: Colocación de una riostra con sus vientos a 2 m de punto de cálculo del momento flector anterior.

MTotal 3 = 0,5 x 83,5  +  1,5 x 83,5   =  167 N m

En este caso, las distancias se miden desde la antena correspondiente hasta la argolla donde van fijados los vientos (cables de acero).

 

Fig. : Detalle de instalación de vientos en el mástil.

De las tres opciones, la 1 y la 3 son válidas, nos quedaremos con la 1 ya que evitamos la colocación de vientos que complica y encarece la instalación.

En la tabla de elección de mástil anterior,  observamos que en la fila M. Flector está el valor de 355 N m, inmediato superior al calculado ( 347,5 Nm), por lo que elegimos el mástil con referencia 3010 (45 mm de diámetro, 2 mm de espesor y 3 m de longitud). El mástil de la figura del ejemplo tiene unos 4,5 metros de longitud, por lo que se deben utilizar dos tramos, el superior se cortará a 1,5 m, se embonará con el inferior ( de 3 m ) y se colocará un tornillo pasante que los unirá.

El mástil que aparece en la tabla con la referencia 3075 es igual a la 3010 solo que de color rojo.

La fila de la tabla «Momento Flector límite elástico» indica cuando el mástil no vuelve a su posición original tras la flexión, es decir, queda doblado de forma definitiva, por tanto no debemos acercarnos a este valor en la elección del mástil.

4.- Conclusión

Se debe prestar mucha atención a la instalación del sistema de captación por dos motivos:

1º .- Un mal diseño puede provocar accidentes graves, pensad en un día con fuerte viento que provoque la rotura de un mástil.

2º.- Si la calidad de la señal captada es pobre, debido a una mala orientación o a una mala elección de las antenas, no será posible aumentarla posteriormente.

Al orientar una antena, habrá veces que obtengamos mejor calidad (CBER) desviando unos grados la antena respecto a la dirección del repetidor esto es debido a que minimizamos la captación de las señales reflejadas (ecos) a consta de perder un poco de nivel de señal. Se debe tener presente que lo importante es tener el mejor CBER posible en antena, el nivel en dBuV es secundario ya que este último se podrá aumentar con amplificadores posteriormente.

Un saludo.

LeandroGG68

GuardarGuardar

 

Loading

VIDEO DIGITAL y sus FORMATOS

 Indice:

1.- Vídeo Digital, ¿en qué consiste?

2.- Práctica.

3.-Vídeo Digital, lo que también debes saber.

4.- Glosario.

5.- Conclusión.

————– + ————-

1.- Vídeo digital, ¿en qué consiste?

El vídeo digital consiste en aplicar los tres procesos de digitalización a una señal de vídeo analógico. Estos procesos son: el muestreo, la cuantificación y la codificación.

Fig. : Proceso de obtención de la señal de vídeo digital.

Cada uno de estos procesos generará una serie de variantes que darán lugar a las decenas de formatos de vídeo digital que coexisten en la actualidad.

Muestreo.

Consiste en tomar muestras de una señal de vídeo analógico, lo usual es que se haga de la señal en componentes (Y, R-Y, B-Y), aunque cuando se busca la máxima calidad en la señal digital el muestreo se hace de la señal RGB.

Cuando el muestreo se hace a partir de la señal en componentes se le llama subsampling1 y consiste en tomar muestras de cada componente de la señal, es decir, de la luminancia (Y), de la  componente de rojo (R-Y) y de la componente de azul (B-Y).

Cuantificación.

Las muestras obtenidas del subsampling, deben ser cuantificadas, es decir, se les debe asignar una palabra binaria, de esta forma aparece el concepto de profundidad de color1 que hace referencia al nº de bits que se utilizarán para identificar cada muestra obtenida del subsampling.

Codificación.

Después de la cuantificación, normalmente de 8,10 ó 12 bits, el flujo binario obtenido es muy alto, varios cientos Mb/s (Mega bits por segundo),  se necesitan unos discos duros rápidos para poder grabarlo y ocuparía mucho espacio. Esto no es funcional por lo que se requiere el último paso: la Codificación.

Con la codificación reducimos el flujo binario  o bitrate1  , con lo que cada minuto de vídeo nos ocupará menos MB (Mega Bytes) en el disco duro y no necesitaremos discos duros tan rápidos.

La codificación genera  inconvenientes:

1º  Pérdida de calidad irreversible en el vídeo.

2º Pérdida de calidad en las transcodificaciones (exportar el vídeo para llevarlo a otros programas).

3º Menos fluidez al trabajar en la edición.

La solución pasa por  usar un codec1 adecuado. Si vamos a trabajar con varios programas, interesa un codec con poca compresión, un muestreo alto ( 444 ó 422) y una profundidad de color alta (10 ó 12 bits).

Los programas de edición, cuando realizamos la importación de material, nos preguntarán con qué codec deseamos trabajar, por ejemplo Final Cut por defecto trabaja con ProRess 422, por tanto convertirá el formato del vídeo importado a ProRess 422 para trabajar de forma más fluida.

2.- Práctica.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica  “ Grabación y Formatos de vídeo digital   

Vídeo Informe más representativo Curso 18 19

3.- Vídeo Digital, lo que también debes saber.

Frame Rate

Es la cantidad de imágenes (frames) por segundo capturadas por una cámara o mostradas por un dispositivo de visualización. Se utilizan las siglas «fps» (frames por segundo).

Veamos una clasificación de los formatos de vídeo en función de su frame rate:

Cine (4K): 24 fotogramas/seg. Hay algunas películas que están utilizando 48 por ejemplo «El hobbit: un viaje inesperado», con ello se consiguen movimientos más reales.

PAL (720×576) : 25fps  y 50i (entrelazado) para emisión en TV.

NTSC (720×480) : 29,97 ó  30fps y 59,94i ó 60i para emisión en TV.

HDTV (1280×720 ó 1920×1080) : desde 23,976 a 60 fps. En emisión de TV: 720p (deportes)  y 1080i (resto de programas).

UHDTV (4k y 8k) : desde 23,976 a 120 fps (ya no utiliza el escaneo entrelazado).

La «i» indica que se usa un sistema de escaneo  entrelazado1 (interlaced), en el cual la imagen completa (cuadro o frame)  está formada por dos semimágenes denominadas campos.

Cuando el sistema NTSC introdujo el color en 1953, la tasa de 60 campos por segundo fue reducida en un factor de 1000/1001 para evitar la interferencia entre la señal de color y la de sonido. Apareció entonces el frame rate de  29.97 fps y 59,94i (30 cuadros y 60 campos) , esto ha perdurado hasta la actualidad, pero ya no tiene sentido su uso, por lo que actualmente es mejor usar 30 fps ó 60i, siempre que el equipo a configurar lo permita.

En edición de vídeo conviene trabajar con material en progresivo, además con un frame rate  alto se evita el desenfoque de la imagen con el movimiento (motion blur) y se mejora la visualización en cámara lenta.

Hay software como Smoothvídeo Project (SVP) que aumenta el frame rate generando frames intermedios mediante una interpolación entre el frame anterior y posterior.

Resolución

Es el nº de píxeles que contiene la imagen. Viene determinada por dos números, el primero indica la cantidad de pixeles en horizontal (píxeles por línea) y el segundo en vertical (nº de líneas).

Fig. : Resoluciones de vídeo más usuales.

Las resoluciones 2K y 4K se definieron por la DCI (Digital Cinema Initiatives) que es un consorcio que apareció en 2002, cuyos miembros fundadores fueron los siete mayores estudios de cine estadounidenses (Walt Disney Pictures, Fox Broadcasting Company, MGM, Paramount, Sony Pictures Entertainment, Universal Studios y Warner Bros). Este consorcio emitió en 2005 las recomendaciones técnicas para la Producción de Cine Digital (DCP) ya que hasta esa fecha no había ningún tipo de norma.

Códecs y contenedores

Los códecs  son algoritmos realizados con software para comprimir y descomprimir una trama digital con vídeo y audio en tiempo real.

Al archivo generado se le denomina Contenedor y es el que determina la organización de la información de audio, vídeo y metadatos. Cada contenedor soportará unos códec de audio y vídeo determinados. En las tablas siguientes se muestran algunos contenedores y códecs de uso común.

Fig. :  Contenedores y códec de vídeo.

Fig. : Contenedores y códec de audio.

Un contenedor muy usado para el intercambio de material entre profesionales  es el MXF. La figura siguiente muestra las opciones MXF que ofrece el programa Compressor de Apple, vemos como puede contener diferentes códecs.

Fig. : Contenedor MXF en el software Compressor.

Hay varias versiones de MXF (Patrones Operacionales) con especificaciones particulares  que definen el tipo de imagen/sonido que contiene y la estructura de los metadatos. Las versiones más comunes son la OP-1a y la OP-Atom, quedando identificadas en los programas  de codificación como MXF OP-1a y MXF OP-Atom. Un archivo .mxf puede ser reproducido sin problemas con el reproductor VLC.

Con aplicaciones gratuitas como videoSpec (OSX), Format Factory (Windows) o mediainfo, podemos inspeccionar las características de cualquier vídeo.

Fig. : Análisis de un archivo de vídeo con videoSpec.

Códec Apple ProRes

Son una  familia de códecs de mucha calidad muy usados sobre todo en entornos MAC, aunque también en windows pero con algunas restricciones. Sus características vienen definidas en un documento llamado libro blanco (white paper) que se actualiza periódicamente.

Fig. : Características de códecs Apple ProRes (libro blanco Apple ProRes 2014)

Fig. : Usos de los códecs Apple ProRes (libro blanco Apple ProRes 2014).

Códecs AVID DNxHD.

Esta familia de códecs es más numerosa que la ProRes, en la siguiente tabla se muestran los más usuales. Obsérvese que por debajo de 220x, la profundidad de color es de 8 bit mientras que en ProRes se mantiene a 10 bits.

Fig. : Códecs AVID DNxH.

Códecs H264.

H.264 ó MPEG-4 parte 10 es una norma que define un códec de vídeo de alta compresión, desarrollada conjuntamente por el ITU-T Video Coding Experts Group (VCEG) y el ISO/IEC Moving Picture Experts Group (MPEG). Este códec mejora a los de los estándares anteriores: MPEG-2, H.263 o MPEG-4 parte 2.

La ITU-T quiso ponerle el nombre:  ITU-T H.264  y el ISO/IEC prefería: MPEG-4 Parte 10 Códec de Video Avanzado (AVC), al final, ni para uno ni para el otro, le pusieron:  H.264/MPEG-4 AVC.

La norma H.264, distingue varios Perfiles (o extensiones) y dentro de cada perfil varios Niveles (Layers). En la tabla siguiente se ha tomado como ejemplo el Nivel @L4.1 para varios perfiles.

Fig. : Perfiles de la Norma H264.

Veamos un par de ejemplos:

Main@L4.0 : perfil Main y nivel 4.0 (este es libre, los fabricantes no pagan ningún canon por implementarlo en sus cámaras).

High@L5.1 : perfil High y nivel 5.1.

En esta tabla se analizan los perfiles H264 de varios ajustes de la cámara de acción GoPro HERO5 Session.

En este enlace se pueden ver las especificaciones de los perfiles así como las características de los diferentes niveles disponibles para la norma H264.

Códecs H265.

Recibe los siguientes nombres: H.265 , MPEG-H Parte2 ó HEVC (High Efficiency vídeo Coding).

Es una norma sucesora al  H.264/MPEG-4 AVC y desarrollado por el mismo grupo de trabajo.

Se organiza de forma similar al H264, en perfiles (extensiones)  y niveles. Para adaptarse a cualquier uso se han definido 9 perfiles y 13 niveles, en este enlace  pueden verse.

Ventajas  respecto al H264:

  • Mantiene la calidad con bitrates   2 ó 2,5 veces inferiores, por lo que es muy interesante para la grabación en 4K, prácticamente todos los teléfonos móviles que graban en 4K lo implementan.
  • Puede trabajar con vídeo de hasta 8K y 300 fps mientras que el H264 sólo hasta 4K 60 fps.

Formato RAW.

Raw significa grabación en bruto, este formato contiene toda la información entregada por el sensor de la cámara, por ello el formato RAW nos proporciona la mejor imagen que pueda dar la cámara.

Un ejemplo de flujo de trabajo para RAW tipo CinemaDNG puede ser el siguiente:

1.- La cámara genera dos tipos de archivo:  .dng (foto) para cada frame de video y .wav para el audio.

Fig. : Archivos .dng  y .wav generados por la cámara en modo RAW CinemaDNG.

2.- Con un programa como DaVici Resolve se importan los archivos DNG y se retoca  la colorimetría, encuadre, balance de blancos y exposición.

3.- Se exporta la secuencia a un formato como el ProRes 422 HQ.

4.- Se importa la secuencia con un programa de edición, por ejemplo  Final Cut Pro X y se procede a su edición.

Ventajas:

  • Se conserva toda la información, viéndose con más calidad.
  • Mayor profundidad de color, normalmente 12 o 16 bits con lo que se mejora el tratamiento del color y los degradados.
  • Permite modificar el balance de blancos en postproducción.
  • Permite mover los valores de exposición uno o dos  puntos, por encima o por abajo sin apenas generar ruido en la imagen. Esto hace que podamos modificar el rango dinámico en postproducción.

Inconvenientes:

  • Incremento de bitrate.
  • Un flujo de trabajo (workflow) más complicado. Hay que exportar el archivo RAW a una secuencia de DNGs, para después hacer la corrección de color pertinente y volver a importarlos para crear la secuencia.
  • Es necesario un ordenador más potente con discos rápidos (SSD) y mucho espacio de almacenamiento. Como ejemplo, en una cámara Blackmagic Cinema en raw con resolución 2400×1350 a 24 fps graba unos 7GB por minuto.

Formatos habituales usados para grabación en RAW:

  • CinemaDNG (2008): desarrollado por Adobe.
  • ProRes RAW (2018): desarrollado por Apple.
  • Blackmagic RAW (2018): desarrollado por Blackmagic.

Fig. : Comparación del Apple ProRes RAW (libro blanco Apple ProRes RAW 2018) con otros códec ProRes.

Conexiones en vídeo digital.

SDI.

SDI  responde a las siglas Serial Digital Interface, transmite señal de vídeo, audio y datos por un solo cable, es el interfaz predominante para la comunicación de equipos de vídeo profesionales. Se  utiliza un cable coaxial de 75 Ω de impedancia y conectores BNC.

Fig. : Cable SDI para 4K.

La longitud del cable máxima dependerá de la calidad del cable y del tipo de señal SDI transportada.

Fig. : Distancias para cables SDI flexibles de la firma Emelec.

Los diferentes tipos de señales SDI han sido creadas paulatinamente según han ido apareciendo nuevas resoluciones de vídeo en el mercado. Cada una de ellas está definida por un estándar distinto que marca los parámetros que la caracterizan.

Estos estándares los crea la sociedad americana SMPTE (Society of Motion Picture and Television Engineers), una asociación de ingenieros especializados en vídeo que actúan como propulsores marcando las características que deben cumplir estas señales.

SDI estándar ( SMPTE 259m y SMPTE 344m ):  creado para regular las señales de definición estándar con resoluciones de 480 y 576 entrelazadas y progresivas.

HD-SDI (SMPTE 292m): Para señales de 720p y 1080i a 60 fps con un bitrate de 1,50Gbps.

3G-SDI (SMPTE 424m): Para señales de 1080p a 60 fps con un bitrate de 3Gbps.

6G-SDI (SMPTE 2081): Para señales de 4K a 30 fps con un bitrate de 6Gbps.

12G-SDI (SMPTE 2082): Para señales de 4K a 60 fps con un bitrate de 12Gbps.

HDMI.

HDMI responde a las siglas de High Definition Multimedia Interface. Apareció en 2003 y permite conectar vídeo y audio digital sin compresión entre dos dispositivos a través de un único cable.

Fig. :  Interior de cable HDMI.

Fig. : Tipos de conectores HDMI.

Ha habido varias versiones de HDMI, siendo compatibles hacia atrás, veamos las últimas:

HDMI 1.4 (2009).

  • Resolución: 1080/60 fps y  4K (4096 x 2160 /24 fps ó 3840 x 2160 /30 fps).
  • Máximo ratio de transferencia: 10,3 Gbps.
  • 3D: 1080p a 60 fps.
  • Audio: 8 canales / 192 kHz.

HDMI 2.0 (2013)

  • Resolución: 4K (4096 x 2160 /60 fps).
  • Máximo ratio de transferencia: 18 Gbps.
  • 3D: 4K a 25 imágenes/segundo.
  • Soporte para trabajar con la tecnología HDR (High Dinamic Range).
  • Audio: 32 canales / 1536 kHz.

HDMI 2.1 (2017)

  • Resolución: 8K a 60 fps y 4K a 120 fps.
  • Máximo ratio de transferencia: 48 Gbps.
  • Soporte para trabajar con la tecnología HDR.
  • Audio: 32 canales / 1536 kHz.

Además del audio y el vídeo, el cable HDMI permite realizar otras  conexiones:

CEC (Consumer Electronics Control): Se introdujo a partir del HDMI 1.0 y sirve para enviar comandos de control entre aparatos de forma que con un mando a distancia  se controlan los equipos conectados por HDMI. No todos los fabricantes lo implementan en sus equipos.

ARC (Audio Return Channel):  desde el HDMI 1.4 y sirve para que un televisor pueda transmitir audio hacia un amplificador de Home Cinema por ejemplo. Nos ahorra el tener que conectar un cable de audio entre ambos equipos.

HEC (HDMI Ethernet Channel):  desde el HDMI 1.4 y sirve para realizar una comunicación Ethernet a 100 Mbit/s entre los equipos conectados.

En cuanto a la distancia máxima de un cable HDMI, a partir de unos 12 metros, es necesario usar cables de calidad superior a la estándar, es posible encontrar cables de hasta de 20 m, si se desea una distancia mayor,  hay que insertar un amplificador de HDMI.

DVI.

DVI responde a las siglas de Digital Video Input. Apareció en 1999 y se utiliza para conectar monitores y proyectores a ordenadores. No transporta audio.

Fig. : Tipos de conexiones DVI.

Tipos de conexiones DVI:

DVI-A: 17 pines, 12+5 y contiene las mismas señales que el conector VGA solo que con diferente disposición, por tanto la señal es analógica, con un simple adaptador se puede convertir a VGA.

DVI-D: Transmite únicamente señal de vídeo digital y puede ser tipo Single Link o de Dual Link. El segundo posee más ancho de banda. Con un simple adaptador se puede convertir a HDMI.

DVI-I: Transmite señal analógica y digital, con un simple adaptador se puede convertir a HDMI o a VGA.

Fig. : Cable adaptador DVI-D dual link- HDMI con Ferrita.

DisplayPort.

Es un conector muy similar al HDMI en sus características técnicas, pero libre de licencias y cánones (no tiene la protección anti-copia HDCP como el HDMI), se suele incluir en algunas tarjetas gráficas y es raro verlo en televisores, su principal inconveniente es su incompatibilidad con DVI y HDMI. Hay dos tipos: el normal y el mini.

Fig. : Mini DisplaPort y DisplayPort.

Soporta un  flujo de datos máximo de 10,8 Gbit/s y resolución WQXGA (2560×1600) sobre un cable de 15 metros. En distancias más cortas soporta la resolución 4k.

4.- Glosario.

Subsampling: Determina el número de muestras  tomadas de la señal de componentes. El primer número representa las muestras tomadas de Luminancia, que al ser un 4 indica que  se muestran todos los píxeles.

Los dos números siguientes indican las muestras tomadas de las dos componentes de color R-Y y B-Y.

Fig. : Patrones de subsampling.

El  códec utilizado determinará qué patrón de subsampling se utiliza,  veamos algunos ejemplos:

4:4:4 :   ProRes 4:4:4 XQ y 4:4:4 (apple).

4:2:2 : AVC-Intra 100 (panasonic), ProRes HQ,  LT y Proxy (apple), Betacam Digital (sony), DVCPRO 50 (panasonic), DVCPRO HD (panasonic), Digital-S ( JVC), XDCAM HD (sony), Canon MXF HD.

4:1:1 :  DVCPRO (panasonic), NTSC DV (panasonic), NTSC DVCAM (sony).

4:2:0 : Estándares MPEG-1, MPEG-2, MPEG-4  y códecs AVCHD (sony y panasonic), AVC-Intra 50 (panasonic), Apple Intermediate Codec, MJPEG, VC-1,  PAL DV, PAL DVCAM (sony), HDV.

4:1:0 : Calidad muy baja similar al VHS, es poco utilizado.

 

Profundidad de color: Indica los bits utilizados para representar (cuantificar) cada pixel de una imagen. Puede ser de 8, 10, 12, 16 y 32 bits.

Con una profundidad de color de 8 bits se disponen de 256 niveles (28) para cuantificar cada  pixel,  como son tres componentes (rojo, verde y azul): 256 x 256 x 256 = 16.777.216 colores.

Si fuera de 10 bits se dispondrían de 1024 niveles (210) lo que nos daría 1.073.741.824, más de un billón de colores.

Por tanto si se va a corregir el color con programas como  DaVinci Resolve  es conveniente escoger un códec con profundidad de color de 10 ó 12 bits.

Bitrate:  Es el Nº de bits por segundo que genera la trama de vídeo. El bitrate nos permitirá conocer lo que ocupa nuestro material en el disco duro y si los discos duros son capaces de grabarlo. Si trabajamos con varias capas en un programa de edición, debemos multiplicar el bitrate calculado por el nº de capas para saber si nuestro disco duro es lo suficientemente rápido para trabajar con este material. Como ejemplo un disco duro SATA de 7200 rpm suele grabar a unos 100 o 150 MB/s y un disco SSD desde unos 300 MB/s si es SATA hasta unos 2000 MB/s si es PCI express.

En este enlace se puede descargar una calculadora de bitrate para IOS y Android.

Fig. : Calculadora de bitrate AJA DataCalc

Los datos que introduciremos son: tiempo, códec, resolución, frame rate , nº de canales de audio, frecuencia de muestreo de audio y nº de bits de cuantificación de audio.

Esta calculadora nos proporciona la cantidad de memoria que ocupará el material en el disco duro en MB ó GB. Para saber el bitrate, debemos poner en TIME:  1 segundo y el resultado será en MB/s, multiplicando este valor por 8 lo podemos pasar Mbps (Mega bits por segundo).

Fig. : Influencia del bitrate en la imagen.

En las emisiones de TDT, los operadores ajustan el bitrate en función del programa emitido, en la figura anterior se observa cómo afecta esto a una imagen estática.

Entrelazado: Es una técnica en la que se divide la información de una imagen (frame) en dos semimagenes (campos). Así es como capturan las imágenes las cámaras analógicas, las digitales además pueden capturar en Progresivo, en este caso la imagen se captura completa.

El entrelazado se realiza para ahorrar ancho de banda o bitrate y para evitar el parpadeo de la imagen pero genera problemas de imagen borrosa en objetos en movimiento.

Este sistema de exploración de la imagen se utiliza en la emisión de TV de calidad SD (standard) y en HD 1080i ,  «i» significa entrelazado y «p» progresivo. Cuando el programa de TV es de deportes lo habitual es que se emita en HD 720p. El bitrate de 1080i y 720p es similar.

Fig. : Comparación de vídeo Progresivo y Entrelazado.

En la figura anterior vemos un vídeo en pausa de un coche a 30 Km/h se observa lo siguiente:

  • En progresivo los objetos en movimiento se ven de forma más nítida, ver detalle de rueda.
  • Los objetos estáticos se ven igual en progresivo que en entrelazado.
  • Con el procedimiento de desentrelazado mediante duplicación de líneas se mejora algo la visualización de los objetos en movimiento.

5.- Conclusión.

Recuerdo cuando, en mi colegio,  instalamos el estudio de RTV  (1999) para las prácticas del módulo de Grado Superior » Equipos de RTV «, Magnetoscopios DVCAM, controlador de edición, mesa de mezclas que aunque digital, las entradas/salidas eran analógicas, se grababa en cinta magnética. Entonces los equipos informáticos no tenían suficiente potencia para trabajar cómodamente la edición de vídeo, había que invertir mucho para eso.

La potencia de los equipos informáticos ha aumentado mucho en estos últimos años, lo que ha permitido trabajar fluidamente con resoluciones de vídeo mayores, actualmente estamos enclavados en la resolución 1080 (full HD) pero el 4K está empujando mucho, las TV que se están vendiendo actualmente a un precio asequible están preparadas para 4K.

Ya se está emitiendo en 4K en algunos canales de satélite  y  la llegada del DVB-T2, el sucesor de la TDT actual (DVB-T), traerá las emisiones en 4K de algunos canales. Muchos móviles graban en 4K usando el códec H265 (unos 350 MB/min). Para que se implante el 8K todavía  falta, aunque algún móvil ya lo lleva.

El mundo del vídeo digital es muy cambiante y posee muchos términos, en este artículo he pretendido poner un poco de orden en este tema usando un lenguaje sencillo, sobre todo para ayudar a los que se inician en esto, espero haberlo conseguido.

Un Saludo.

LeandroGG68

GuardarGuardar

Loading

Orientación de Parabólica

Indice:

1.- Procedimiento para orientar una Antena Parabólica.

2.- Práctica.

3.- Antena parabólica, lo que también debes saber.

4.- Glosario.

5.- Conclusión.

————– + ————-

1.- Procedimiento para orientar una Antena Parabólica

Orientar una antena parabólica a un satélite es un proceso sencillo, pero requiere que se sigan con rigurosidad una serie de pasos. Os presento un procedimiento con el que en 10 min podemos tener la antena orientada.

Vamos a orientar una antena Parabólica de tipo Offset a los satélites Astra 19,2 º E.

PROCEDIMIENTO:

  1. En la Web http://www.dishpointer.com seleccionamos el satélite “19,2ºE Astra 1KR,1L,1M,1N”  y en localización escribimos  “Av. San Juan Bosco 33 – Cartagena”. Colocamos la chincheta sobre el punto de instalación de la antena, la web nos trazará una línea de referencia para el Acimut1. Localizamos un edificio o punto geográfico conocido que esté sobre  la línea verde trazada.

Uso de dishpointer - El cajón del electrónico

  1. Entramos en la web https://es.kingofsat.net/, en Busca de Canales escribimos “Canal Sur Andalucía” ya que está en un satélite de esta posición orbital (Astra 1KR) y además en abierto,   obtenemos:

Uso de kingofsat - El cajón del electrónico

  1. Fijar la antena a su soporte, dando un apriete suave a los tornillos de la agarradera.
  2. Situándose detrás de la antena, ajustar el azimut para que apunte al edificio o elemento geográfico elegido en el punto 1. Apretar un poco más la agarradera.
  3. Conectar la salida del LNB al medidor de campo, configurándolo en modo SAT, introducimos la frecuencia del transponder que contiene al “Canal Sur Andalucía” (11156 MHz) y alimentamos el LNB con 13 V por ser la polaridad del transponder vertical y como la frecuencia de este transponder (11156 MHz) es menor de 11700 Hz (Ku Baja), NO aplicamos el tono de 22 Khz. Esto se hace sólo para la banda Ku Alta que va desde 11700 – 12750 MHz.
  4. Aflojar un poco los tornillos de la elevación e ir inclinando hacia arriba la antena hasta que veamos en la pantalla del medidor de campo, en modo espectro, los diferentes transponders de los satélites en esta posición orbital.
  5. Demodular el canal y comprobar que está el servicio deseado: “canal sur Andalucía” para asegurarnos que estamos apuntando a Astra.
  6. Retocar acimut y la Elevación hasta que el VBER sea el mejor posible.
  7. Retocar polarización Polarización del LNB hasta que el canal quede más perfilado el canal (valles más profundos en sus extremos) y el VBER y MER sean los mejores posibles. Un VBER < 9E-5 y un MER >11 dB. Si no se consiguen volver a retocar un poco el acimut y la elevación.
  8. Apretar la abrazadera de acimut y tornillos de elevación (con moderación).

2.- Práctica.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica  Recepción Satélite     y  Vídeo Informe destacable curso 19 20

3.- Antena parabólica, lo que también debes saber.

A continuación se muestran las bandas y sus frecuencias usadas para emisión y recepción satelital, a nosotros nos interesa la banda Ku en recepción (Downlink) que va desde 10700 – 12500 MHz.

Fig. : Bandas y asignación de frecuencias para satélite

Ventajas de la banda Ku:

  • Se usa únicamente para satélite por lo que tiene menos interferencias de otros emisores.
  • Tamaño de antenas más pequeño  ya que se emite con mayor potencia (PIRE).

Inconvenientes:

  • Afectada por la atenuación de la lluvia y despolarización.
  • Pérdidas en la línea de transmisión de coaxial y del guía onda elevadas. Esto afecta sólo a los equipos de transmisión, en la recepción al convertir a Frecuencia Intermedia, no tenemos este problema.

Como podemos ver en la siguiente figura, la banda Ku se subdivide en baja y alta. Si el transponder  elegido en el medidor de campo pertenece a Ku Alta, debemos alimentar el LNB con 13 ó 18 Voltios según polaridad Vertical u Horizontal y con un tono de 22 KHz que hará que  se seleccione en el LNB el oscilador local de 10,6 GHz correspondiente a esta banda.

             Fig. : Espectro de frecuencia de Recepción Satélite y FI.

Los transponder de la banda DBS se emiten con una potencia superior a 100 dBw lo que hace que los platos de la parabólicas puedan ser de menor diámetro. 

4.- Glosario

 Acimut: Giro horizontal de la antena parabólica. Es lo primero que debemos fijar y con exactitud.

Elevación: Giro vertical de la antena parabólica. Dependerá del tipo de antena, una offset requiere menos grados. Una vez bien fijado el acimut, la elevación nos la determinará la aparición de los canales en la pantalla del medidor de campo colocado en modo espectro.

Polarización: Es el giro que se da al LNB para que la antena receptora en el interior del LNB quede paralela con la antena emisora ubicada en el satélite, esto asegura la máxima recepción y el máximo rechazo a los canales adyacentes de la otra polaridad.

Fig. : Ajuste de polarización del LNB.

Frecuencia del transponder: Es la frecuencia del canal que contiene los programas de TV (servicios). Está comprendida entre 10500 y 12750 MHz.

Cada satélite posee varios transponder que reciben la señal de tierra, la cambian de frecuencia y la vuelven a emitir hacia tierra. A su vez cada transponder permite enviar en torno a 10 o 15 servicios (programas de televisión) y como en la misma posición orbital se ubican varios satélites del mismo operador, se consiguen transmitir cientos de servicios para esa orientación.

Polaridad: Puede ser linear o circular. La más normal es la lineal que a su vez puede ser Vertical (V) u Horizontal (H). Esto sirve para indicar al LNB mediante una tensión si debe recibir los canales en Vertical (aplicándole 13 V) o los de Horizontal (aplicándole 18 V).

Algunos satélites emiten en polaridad circular en su banda DBS, en este caso puede ser a derechas o a izquierdas aunque es poco común este tipo de polaridad en TV en Europa. Con un LNB normal se puede recibir un transponder con polarización circular, pero se pierden 3 dB de potencia, para no perderlos se necesita un LNB de polarización circular.

Estándar: Estándar de transmisión, es el DVB-S o el más reciente DVB-S2. Los transponders con DVB-S2 tienen un ancho de banda mayor debido a que usan la modulación 8PSK (8 símbolos) la cual tiene mayor rendimiento que la QPSK (4 símbolos) usada en DVB-S.

Symbol Rate: Es la velocidad de transmisión de los símbolos en Mbps (Mega bit por segundo). Un símbolo es una agrupación (palabra) de varios bits, por ejemplo en la modulación QPSK cada símbolo posee 2 bits y en la 8PSK posee 3 bits, por lo tanto QPSK posee 22 = 4 símbolos   y 8PSK  23 = 8 símbolos.

FEC: Es el ratio de codificación, es decir, indica la cantidad de bits de la transmisión que se utilizarán para corregir errores en el receptor. Por ejemplo un FEC de 5/6 indica que de 6 bits transmitidos se usarán 5 bit de datos y 1 para corrección errores. De la corrección de errores se encargan los módulos descodificadores Reed Solomon y Viterbi integrados en los receptores de satélite.

LNB (Low Noise Block): Elemento que recibe la señal del transponder  y la baja de frecuencia (Frecuencia Intermedia) para que pueda ser distribuida mediante cable coaxial.

Estructura interna de un LNB
Fig. : Estructura interna de un LNB universal (polarización lineal)

PIRE (Potencia Isótropica Radiada Equivalente): es la suma de la potencia de emisión del satélite PS  ( en dBw) y la ganancia de la antena del satélite GS  (en dB).

Fórmula matemática
Se mide en dBw :   dBw  =  10 log  W  /  1w
El dBW toma como referencia la potencia de 1 W, por lo que 0 dBw corresponde a 1W.

Si  PIRE es menor de 30 dBw se dice que el satélite es de baja potencia y si es de más de 100 dBw se considera de alta potencia, por ejemplo los transponders de la banda DBS son de alta potencia.

5.- Conclusión

Aunque los conceptos relacionados con la recepción por satélite son muchos, orientar una antena parabólica es un proceso sencillo que sólo requiere que se sigan escrupulosamente unos pasos específicos.

En este artículo he usado el procedimiento más rápido y con menos posibilidad de error en base a mi experiencia, hay muchos más métodos, por ejemplo usando un apuntador de satélite que se puede comprar por unos 20 eu, en vez de un medidor de campo, e incluso tomando una TV como medidor, metiéndose en el menú de configuración de la misma.

Un Saludo.

LeandroGG68

GuardarGuardar

Loading

VIDEO ANALOGICO y sus FORMATOS

Indice:

1.- Vídeo analógico, qué es  y  tipos de formatos.

2.- Videoprácticas.

3.- Vídeo analógico, lo que también debes saber.

  • Sincronismos.
  • Medidas con un monitor de forma de onda.
  • Medidas con un vertorscopio.

4.- Conclusión.

————– + ————-

1.- Vídeo analógico, qué es  y  tipos de formatos.

El vídeo analógico es la imagen que se presenta sobre una pantalla de televisión y se obtiene tras aplicar una señal a un televisor, trazándose líneas en la pantalla a mucha velocidad y gracias a nuestra persistencia retiniana (se mantiene la imagen en la retina durante una fracción de tiempo), conseguimos integrar las líneas viendo las imágenes completas.

Tipos de Formatos.

Existen cuatro tipos de señal de vídeo analógico: RGB, Componentes (Y,Pb,Pr), Video-S (Y/C) y Vídeo Compuesto (CVBS).

Generación de formatos de vídeo analógico
Fig. 1.Generación de formatos de vídeo analógico.

RGB.

Es el formato original, el que entregan las cámaras de vídeo tras captar la escena. Se usan tres componentes ( Rojo, Verde y Azul ), ocupando un ancho de banda de 5 MHz cada canal.

Este formato se utiliza para visualización, es decir, conexión directa a monitores, no se han fabricado equipos que lo graben debido al su gran ancho de banda. Permite transmitir vídeo con calidad HD.

Los conectores usados son:  el BNC en equipos profesionales, el VGA para proyectores y pantallas planas y el EUROCONECTOR para televisores más antiguos.

Euroconector - EL CAJON DEL ELECTRONICO
Fig. 2 . Equivalencia de pines del Euroconector y el  JP21 (equivalente Japonés).

Los equipos de fabricación Japonesa usan un conector igual al euroconector europeo pero con distinta correspondencia de sus pines.

Cuando una televisión tiene varios euroconectores, normalmente sólo uno será capaz de recibir la señal RGB, debemos identificarlo usando el manual, además debemos entrar en el menú del televisor y configurar esa entrada para señal RGB. Por defecto todas las entradas de euroconector van configuradas para vídeo compuesto (de peor calidad que RGB).

COMPONENTES (R-Y , B-Y , Y).

Formato obtenido del RGB mediante una matriz sumadora sin reducir apenas la calidad  pero sí el ancho de banda, pasando de 15 MHz  para RGB a 7 MHz, esto se consigue eliminando la información redundante de luminosidad de las tres componentes RGB. Se transmite mediante tres líneas.

Las componentes R-Y y B-Y contienen la información de color y la componente de Y o luminancia aporta la información de luminosidad de la imagen y además contiene los sincronismos necesarios. La luminancia se obtiene de la siguiente forma:

 =  0,30 R  +  0,59 G  +  0,11 B

, G , B   = componentes de la señal RGB.

Entrada/salidas para este formato las encontramos en multitud de equipos profesionales, también en las pantallas planas y proyectores. Este formato se utiliza generalmente como base para la digitalización de señales de vídeo. Puede transmitir vídeo con calidad HD.

Los conectores usados para este formato son: el RCA en equipos domésticos y el BNC en equipos profesionales.

Conectores de señal de COMPONENTES - EL CAJON DEL ELECTRONICO
Fig. 3. Conexiones de señal de componentes.

En equipos domésticos, a las componentes R-Y y B-Y se las identifica con las siglas  PR/CR  y  PB/CB.

Como podemos apreciar en la figura de arriba,  los equipos profesionales, usualmente, comparten los conectores BNC para la señal de RGB y la de componentes, la selección se hace mediante un conmutador.

VIDEO S (Y/C).

Posee dos componentes:  luminancia (Y) y crominancia (C).

La señal de luminancia en este fomato es idéntica a la de componentes (Y).

La crominancia se obtiene modulando (modulación tipo QAM)  una subportadora de 4,43 MHz con las componentes R-Y y B-Y, este proceso implica una pérdida importante de calidad.

Para poder recomponer la información de color se necesita una muestra de la subportadora «limpia» (sin modular) consiguiendo así una referencia de la amplitud y fase originales para saber a partir de qué valor hay que comparar el nivel de tonalidad y saturación. Para ello, se añade unos ciclos de la subportadora a la señal de sincronismo después de cada barrido horizontal. Estos impulsos se conocen como Burst o Color Burst.

Los antiguos grabadores S-VHS y Hi 8 graban este formato, actualmente lo podemos encontrar en pantallas planas, proyectores, tarjetas capturadoras, etc, se usa un conector minidin, su resolución en el sistema PAL es de 720 x 576 píxeles (realmente tiene 625 líneas pero sólo 576 son visibles).

Conector minidin para VIDEO S - EL CAJON DEL ELECTRONICO
Fig. 4. Conector minidin para vídeo S.

VIDEO COMPUESTO (CVBS).

En los equipos, este tipo de señal se suele identificar como CVBS (Color, Vídeo, Borrado y Sincronismos), se obtiene mezclando la señal de croma con la luminancia.

La croma se inserta en los huecos del espectro que no están siendo usados por la luminancia,  lo que hace que se reduzca a 5 Mhz el ancho de banda utilizado. El inconveniente es que cuando la  imagen es compleja (mucho entramado), los huecos libres de la luminancia se reducen creando una distorsión denominada moire.

Espectro de un señal de video compuesto - EL CAJON DEL ELECTRONICO
Fig. 5. Espectro de la señal de vídeo compuesto

Distorsión de Moiré - EL CAJON DEL ELECTRONICO
Fig. 6. Distorsión de Moiré en una imagen

El vídeo compuesto se transmite con una sola línea, ideal para modular un canal de radiofrecuencia. Los emisores de vídeo analógico emiten en este formato, su resolución en el sistema PAL es de 720 x 576 píxeles.

Este formato se graba en los antiguos equipos VHS y 8 mm y su calidad es algo inferior a la que proporciona el formato  vídeo S.

Los conectores que se utilizan son: el BNC para equipos profesionales y el RCA (amarillo) para los domésticos.

2.- Vídeo Prácticas.

2.1. –   Medida de diferentes parámetros de la señal de señal de vídeo compuesto  mediante un Osciloscopio.

2.2. –  Estudio de los formatos de vídeo analógicos: Vídeo Compuesto, Vídeo S y RGB. Se compara la calidad entre los mismos y se estudia la señal de sincronismo que se utiliza en RGB.

 

3.- Vídeo analógico, lo que también debes saber.

Sincronismos.

Son señales que acompañan a todos los formatos de vídeo analógico para que el televisor pueda sincronizarse con el equipo fuente de imagen ( cámara o reproductor). Son dos los tipos de sincronismos que se manejan: horizontal y vertical.

Sincronismo horizontal: establece la velocidad a la que se trazan las líneas de la imagen, en el sistema PAL es de 15625 Hz.

Sincronismo vertical: establece la velocidad a la que se muestran los grupos  de líneas que conforman una semimagen o campo, en el sistema PAL es de 50 Hz.

Señal de video compuesto en Osciloscopio
Fig. 7. Retrazado vertical en señal de vídeo compuesto.

En la señal de RGB los sincronismos pueden transmitirse de tres formas distintas:

  • Sincronismos separados (RGBHV): hay una línea para el sincronismo horizontal HSync y otra  para el sincronismo vertical VSync. Se necesitan 5 hilos para la transmisión, un ejemplo es la señal RGB que se lleva desde un ordenador a un monitor mediante cable VGA

Conector VGA - EL CAJON DEL ELECTRONICO
Fig. 8. Conector D-Sub15 (VGA).

  • Sincronismo compuesto (RGBS): Se transmite el sincronismo horizontal y vertical por un mismo cable, se necesitan por tanto un total de 4 hilos para la transmisión.
  • Sincronismo en verde (RGsB): La información del sincronismo horizontal y vertical se transmite junto con la señal de color verde, necesitándose sólo 3 hilos para la transmisión.

En la siguiente figura vemos como es posible seleccionar si el sincronismo se introduce en el verde o no, también permite cambiar la polaridad de los sincronismos, lo normal es que sean negativos (almenas hacia abajo).

Generador de Vídeo - EL CAJON DEL ELECTRONICO
Fig. 9. Generador de vídeo Promax GV 698.

En los formatos Componentes, Vídeo S y Vídeo compuesto, al poseer la luminancia,  esta es la que contiene los sincronismos horizontal y vertical.

Medidas con monitor de forma de onda.

Con un monitor de forma de onda o un osciloscopio podemos medir los valores de tensión y tiempo de la señal de vídeo para asegurarnos que se ajustan a su valor normalizado.

Cuando se analiza una señal de vídeo analógico se hace a partir de una imagen patrón llamada barras de color. Una línea en el formato vídeo compuesto tendría la forma y medidas  que se muestran en la siguiente figura:

Línea de TV - EL CAJON DEL ELECTRONICO
Fig. 10. Valores standard de Línea de TV en formato vídeo compuesto.

Hay que destacar:

1º. La tensión pico a pico (Vpp) medida entre la base del sincronismo y el nivel de blanco (barra blanca) es de 1 voltio.

2º. La barras de color están ordenadas de forma que tienen un valor de luminancia descendente.

3º. En el pórtico posterior se inserta la ráfaga de sincronismo de color o BURST, que permite al televisor demodular la información de color de cada línea.

4º. La información de color (croma) aparece en la figura en color gris, esta es la señal modulada en QAM (modulación en amplitud y fase), cuanto mayor sea su amplitud mayor será la saturación del color.

En la siguiente figura se aprecia como se van obteniendo los diferentes formatos de vídeo analógico a partir de la señal de RGB.

Línea de TV en todos los formatos - EL CAJON DEL ELECTRONICO
Fig. 11. Línea de TV en todos los formatos de vídeo analógico.

Medidas con un vertorscopio.

Este equipo nos permite comprobar la colorimetría de la imagen, tras aplicarle una imagen  de barras de color (imagen patrón), nos mostrará una serie de puntos correspondientes a cada color. Realmente lo que se representa  es la componente B-Y en el eje horizontal y la R-Y en el vertical.

El equipo a medir debe generar la imagen de barras de color. En el sistema PAL el vectorscopio nos mostrará 12 puntos (6 en el sistema NTSC), estos puntos definen la tonalidad y saturación de cada color.

Cada color se identifica con sus siglas en mayúscula y en minúscula, por ejemplo el  Magenta: MG y mg, esto es debido a que en el sistema PAL, se invierte cada dos líneas el componente R-Y, esto no sucede con el sistema NTSC. Esta propiedad del sistema PAL hace que sea más inmune a las interferencias por reflexiones de la señal cuando se transmite por radiofrecuencia.

Vertorscopio - EL CAJON DEL ELECTRONICO

Fig. 12. Retícula de un vectorscopio para sistema PAL.

Monitor de forma de onda - vectorscopio - EL CAJÓN DEL ELECTRONICO
Fig. 13. Monitor de forma de onda – vectorscopio con vídeo compuesto en sistema PAL.

Las líneas que aparecen uniendo los diferentes puntos reflejan la transición del color de una barra al color de la otra, por ejemplo la barra de color cian (CY) tiene a sus lados la verde (G) y la amarilla (YL), por este motivo el punto CY está enlazado con el YL y el G. Esta transición realmente es un cambio de fase (tonalidad) y amplitud (saturación de color) de la subportadora de color (onda senoidal de 4,43 Mhz).

Procedimiento de uso un vectorscopio:

Este vídeo aclara muchos conceptos referentes al uso del vectorscopio:

Veámoslo ahora pasito a pasito:

1.- En una entrada del vectorscopio, introducimos la señal de barras de color generada en el  equipo fuente a medir.

Conexiones de un vectorscopio Tektronix WVR 500 - EL CAJÓN DEL ELECTRÓNICO
Fig. 14. Conexiones de un vectorscopio Tektronix WVR 500.

2.- Realizamos la sincronización de la señal aplicada con la retícula mostrada por el vectoscopio, para ello hacemos coincidir los segmentos que se generan con el BURST de la señal introducida con los que aparecen en la retícula, esto se hace con un potenciómetro del vectorscopio.

Fig. 15. Retícula de vectorscopio Tektronix WVR 500.

3.- En el menú del vectorscopio comprobamos que el ajuste de saturación de color coincida con el de la señal aplicada, lo normal es que la saturación de color sea del 75%.

Fig. 16. Frontal de vectorscopio tektronic WVR500

4.- Comprobamos que los puntos que nos aparecen coincidan en las cajas de la retícula, esto indica que la colorimetría esta bien. Lo ideal es que los puntos queden dentro de las cajas pequeñas con lo que el error estaría acotado en un 5 % de saturación y 5º de variación de fase.

Fig. 17. Ajustes de color en un CCU SONY M5P.

Como ejemplo en la figura anterior apreciamos los ajustes que nos proporciona una Unidad de Control de Cámara SONY M5P.

Notas a tener en cuenta:

  • La situación de cada punto indica la saturación y la tonalidad del color.
  • Un punto más hacia la periferia indica una saturación de color mayor.
  • Un punto con una variación de ángulo (variación de fase), indica una variación de la tonalidad del color.
  • Las cajas grandes identifican una rango variación de saturación del 20% y una variación de tonalidad de 20º.
  • Las cajas pequeñas identifican un rango de variación de saturación del 5% y una variación de tonalidad de 5º.

4.- Conclusión

Aunque estamos en la era del vídeo digital, los formatos de vídeo analógico los vamos a encontrar en casi todos los equipos de imagen, de hecho todos los formatos digitales se obtienen muestreando la señal de vídeo analógico de componentes o RGB.

Una señal de RGB y de componentes puede transmitir vídeo en HD, un ejemplo lo tenemos en la conexión de un ordenador con su monitor mediante VGA, lo que se transmite por este conector es señal RGB.

El motivo fundamental de que el vídeo analógico haya perdido la batalla frente al digital es su  acentuada pérdida de calidad al realizar sucesivas copias.

Un Saludo.

LeandroGG68

GuardarGuardar

Loading

SONIDO DIGITAL

Indice:

1.- Sonido digital, ¿qué es?

2.- Videoprácticas: Tarjeta capturadora Audio Control 1 y grabadores digitales Marantz PDM  y 660 e iKey Plus.

3.- Sonido digital, lo que también debes saber.

4.- Conclusión.

————– + ————-

1.- Sonido digital, ¿qué es?

El sonido se genera por la variación de presión en un medio (aire usualmente), por lo tanto es analógico,  los equipos actuales trabajan de forma digital (ceros y unos), lo que obliga a traducir esta variación analógica (infinitos valores en el tiempo) a valores digitales, a estos datos digitales es a lo que se le llama sonido digital.

Los equipos que trabajan con sonido digital poseen un conversor A/D (Analógico/Digital) que convierte  la señal analógica a digital, este proceso requiere de tres pasos: muestreo, cuantificación y codificación.

Conversor Analógico/Digital - EL CAJÓN DEL ELECTRÓNICO
Fig. 1. Conversor Analógico Digital (A/D)

Muestreador: Toma muestras de la señal analógica (señal en tiempo discreto), se debe cumplir que :

Fm  >  2  * BW     (Teorema Nyquiest)

F: Frecuencia de muestreo (Hz).

BW (Band Width): Ancho de banda de la señal a muestrear

Como ejemplo, el sonido grabado en un CD está muestreado a 44100 Hz, como el ancho de banda comúnmente adoptado para la música es de 20 a 20000 Hz, se cumple el teorema de Nyquiest. Hacer que se cumpla el teorema de Nyquiest en demasía (sobremuestreoNO aumenta la calidad de la señal, sólo aumenta la cantidad de datos generados. Como referencia las frecuencias de muestreo más usadas por las capturadoras de audio son 32KHz, 44,1KHz, 48KHz,  96 KHz, y 192,4 KHz.

Cuando la frecuencia de muestreo es inferior a la necesaria se produce la distorsión por aliasing, que impide recuperar fielmente la señal muestreada.

Muestreo de una señal - EL CAJÓN DEL ELECTRÓNICO
Fig. 2. Muestreo de una señal.

Cuantificador: Cada muestra obtenida se hace corresponder con un valor (señal cuantificada). El número de valores posibles depende del número de bit del conversor (resolución).

Cuantificación y codificación - EL CAJÓN DEL ELECTRÓNICO
Fig. 3. Cuantización y codificación

Por ejemplo, el sonido grabado en un CD utiliza un conversor A/D de 16 bits, lo que proporciona 216 = 65536 valores posibles para la cuantificación. Cuantos más valores se dispongan más precisa será la cuantificación, lo que reducirá el error de cuantificación.

Codificador: A cada valor cuantificado se le asigna un código binario; por ejemplo el sonido con calidad CD usa palabras binarias de 16 bits.

El flujo de datos binarios obtenidos en esta primera fase de codificación es muy elevado, es el denominado formato PCM o sin compresión, este formato es utilizado en la grabación de CDs,  como ejemplo, una hora de música a 44,1 Khz y 16 bit ocupa unos 700 MB.

Cuando el destino del sonido digital no requiere la máxima calidad, se aplica una  segunda codificación que reduce el tamaño a consta de la calidad,  un ejemplo es el formato mp3, donde se obtienen reducciones de 7 ó 10 a 1 respecto al PCM, con una calidad aceptable (192  y 128 kbps).

Tras operar con los datos binarios, los equipos de sonido digital los transforman en una señal analógica, de esto se encarga el conversor D/A (Digital / Analógico), para finalmente, tras su amplificación, aplicarla a un altavoz que emitirá el sonido.

2.- Videopráctica: Tarjetas capturadoras de sonido.

VIDEO 1: Funciones y puesta en funcionamiento de una capturadora de sonido Audio control 1:

 

VIDEO 2: Funciones y puesta en funcionamiento de un grabador digital Marantz PMD 660:

 

VIDEO 3: Funciones y puesta en funcionamiento de un grabador digital de sonido iKEY PLUS:

 

3.- Sonido digital, lo que también debes saber.

En la siguiente figura podemos observar, de forma genérica, los bloques de un equipo de sonido digital.

Equipo de sonido digital: diagrama de bloques - EL CAJÓN DEL ELECTRÓNICO
Fig. 4. Bloques de un equipo de sonido digital.

Filtro antialiasing: Evita que se tomen muestras de señales de frecuencias superiores al ancho de banda deseado, esto elimina la distorsión por aliasing. La frecuencia de corte de este filtro depende de la frecuencia de muestreo, en el caso típico de equipos de CD-Audio, como la frecuencia de muestreo es 44100 Hz, se establece la frecuencia de corte en 20000Hz, un 10% aproximadamente menos que la frecuencia crítica (22500Hz), esto se hace así debido a que los filtros no son perfectos y tienen un pendiente de caída determinada tras su frecuencia de corte.

Filtro de reconstrucción: Asegura que la señal analógica de salida no contenga componentes de frecuencia superiores a la de la frecuencia máxima de trabajo.

Soluciones a problemas del sonido digital.

Distorsión por Aliasing.

Solución: Muestrear a más del doble de la frecuencia máxima de la señal. Esta frecuencia se establece en el software de grabación utilizado o mediante el menú de configuración en los equipos. Lo más usual es muestrear a 44100 Hz, esta frecuencia la aceptan todas las capturadoras.

Error de cuantificación.

Se pretende conseguir que el ruido generado por este error será inapreciable, para ello  su nivel debe ser menor que el ruido de la señal analógica a muestrear.

Solución: Aumentar el nº de bits del cuantificador. En las tarjetas capturadoras se puede ajustar con el software de grabación, en los equipos dedicados normalmente no. Lo normal es trabajar a 16 bits y con un frecuencia de muestreo de 44100 Hz, con lo que se obtiene una relación S/N (Señal/Ruido) de 98,08 dB, superior a la relación S/N de la mayoría de las señales analógicas.

La ecuación que define la relación S/N a partir de los bits del conversor A/D es :

S/N(dB) = 20 log 2n  + 1,76

n = número de bits del cuantificador del conversor A/D

Saturación o clipping

Aparece cuando el nivel de la señal analógica de entrada es superior a la tensión de fondo de escala del convertidor A/D,  esto genera un recorte de la señal por su parte superior. Esta distorsión se puede ver fácilmente con programas de edición de audio, como por ejemplo Adobe Audition o Audacity (gratuito), sólo hay que hacer zoom en un tramo  dónde se aprecie que el nivel es excesivo, veremos las muestras tomadas y la imagen se parecerá a la de la figura siguiente.

Saturación en un convertidor Analógico/Digital - EL CAJÓN DEL ELECTRÓNICO
Fig. 5. Saturación en un convertidor A/D.

Solución: Ajustar el nivel de entrada de grabación para que no se alcance el nivel de CLIP (0 dB usualmente).

Ejemplo de equipo de sonido digital

En la siguiente figura se aprecian los bloques de una  capturadora de sonido Audio Control 1, como la utilizada en la videopráctica.

Esquema de capturadora de sonido Audio Control 1 - EL CAJÓN DEL ELECTRÓNICO
Fig. 6. Capturadora de sonido Audio Control 1. Esquema de bloques

Contiene un conversor A/D y dos conversores D/A, uno para cada dos salidas, también se  aprecia como el circuito para monitoreo puentea los conversores.

En la siguiente tabla vemos como el fabricante describe las características técnicas de esta capturadora.

Características de Capturadora Audio Control 1 - EL CAJÓN DEL ELECTRÓNICO

Características de Capturadora Audio Control 1 - EL CAJÓN DEL ELECTRÓNICO
Fig. 7. Capturadora de sonido Audio Control 1. Características técnicas

 Es de destacar las siguientes siguientes características de esta capturadora:

  • Alta frecuencia de muestreo, dentro del ámbito profesional:  44.1, 48, 96 y 192 KHz 
  • Alta resolución de los convertidores: 16 y 24 bits
  • Relación S/N buena: 100 dB
  • Bajo ruido en la entrada de micrófono : -128 dBu

 

4.- Conclusión

A la hora de elegir un equipo de sonido digital debemos revisar las características de los conversores que posee. Algunos equipos de baja calidad poseen un conversor A/D de menos bits que el conversor D/A, publicitando que el equipo posee una resolución que se hace corresponder con los bits del convertidor D/A. Un equipo de calidad tiene la misma resolución en sus dos conversores.

La relación S/N es una característica que no se nos debe despistar, hay que exigir un mínimo de 95 dB, en caso contrario el equipo aplicará más ruido que el propio de la señal que manejamos.

Aunque dispongamos de una capturadora como la mostrada en este artículo, no conseguimos más calidad de sonido al sobremuestrear una señal, es decir, al sobrepasar el teorema de Nyquiest, sólo sobredimensionados el archivo obtenido, tampoco obtendremos más calidad aumentando la resolución de bits, si la señal analógica tiene una relación S/N inferior a la que nos proporciona la resolución adoptada.

Bueno, espero que esta pequeña incursión en los conceptos básicos del sonido digital os sea de utilidad.

Un Saludo.

LeandroGG68

GuardarGuardar

Loading

CABLE MULTIPAR, lo que necesitas saber.


Indice:

1.-Cable multipar ¿qué es?

2.- Cable multipar , lo que también debes saber.

  • Codificación de los pares
  • Tipos de cable multipar
  • Características de un cable multipar
  • Conexiones en el cable multipar
  • Medidas

3.- Conclusión.

————– + ————-

1.- Cable multipar, ¿qué es?

El cable multipar, más conocido como manguera multipar, es un conjunto de hilos de cobre de un diámetro entre 0,4 y 0,6 mm  agrupados por pares y trenzados.

El aislante suele ser de PVC o polietileno y su uso más extendido es en instalaciones de telefonía.

Tipos de cables multipar - EL CAJÓN DEL ELECTRÓNICO
Fig. 1. Mangeras multipar.

La unidad básica  habitual es de 25 pares y una manguera puede llevar varias unidades básicas. La ley ICT (Instalaciones Comunes de Telecomunicaciones) contempla cuatro tipos de mangueras: 25, 50, 75 y 100 pares.

Elementos de un cable multipar

Constitución de un cable multipar - EL CAJÓN DEL ELECTRÓNICOFig. 2. Elementos de un cable multipar usado en ICT (Televés).

Unidad básica: formada por 25 pares trenzados de cobre de unos 0,5 mm de diámetro y aislamiento de PVC o polietileno.

Lámina de plástico transparente + ligadura : rodea la unidad básica y la separa de otras unidades, está rodeada de un hilo de nylon con doble color llamado ligadura,  que identifica la unidad básica dentro de la manguera.

Hilo de masa: permite conectar la lámina de aluminio a tierra por ambos extremos para poder evacuar los ruidos eléctricos que ésta pudiera captar.

Lámina Aluminio + Poliéster: hace de pantalla electromagnética protegiendo a los pares de ruidos externos, evitando también la emisión electromagnética desde el interior del cable hacia el exterior.

Hilo de rasgado: es de nylon y facilita el pelado de la manguera tirando de él.

Cubierta exterior: protege el cable del exterior, puede ser de PVC (instalaciones de interior), de material libre de halógenos LSFH no propagadores de llama (instalaciones de pública concurrencia) o de Polietileno (instalaciones en intemperie).

2.- Cables multipar, lo que también debes saber.

Codificación de un cable multipar.

La codificación de los pares en un cable multipar está estandarizada, se asigna a un conductor (1) un color de referencia : blanco, rojo, negro, amarillo violeta y al otro conductor (2) un color de parazul, naranja, verde, marrón o gris, esto permite identificar un grupo de 25 pares (unidad básica).

Identificación de pares en cable multipar - EL CAJÓN DEL ELECTRÓNICO
Fig. 3. Código de colores en un cable multipar.

Cada grupo de 25 pares se rodea con una cinta (ligadura) bicolor, el primer grupo con una cinta blanco/azul (como en el primer par), el siguiente grupo con una blanco/naranja (como en el segundo par) y así sucesivamente hasta 600 pares (25×25=625).

Como ejemplo el par 32, estará en el 2º grupo, con ligadura blanco/naranja y sus colores serán rojo/naranja.

Este tipo de cable ha sido ampliamente utilizado por la empresa Telefónica que ha tenido el monopolio de la telefonía fija en España durante muchos años.

Los cables multipar de telefónica son de 26, 51, 76, 101, 202, 303, 404, 606, 909, 1212, 1515, 1818, 2424, con un diámetro de condutor de 0,40, 0,50 0,64 y 0,90 mm. Cada  grupo contiene 101 pares y se compone de 3 unidades básicas de 25 y una de 26, esta última lleva un par blanco/negro denominado «piloto«,  que es usado para comunicaciones entre técnicos de la compañía.

En cables de 2424 pares, la codificación se realiza de la siguiente forma:

  • Los primeros 6 grupos (del par 1 al 606 pares), llevan una ligadura de nylon de color blanco.
  • Los grupos del 7 al 12 (pares del 607 al 1212) llevan la ligadura roja.
  • Los grupos del 13 al 18 (pares del 1213 al 1818) llevan ligadura negra.
  • Los grupos del 19 al 24 (pares del 1819 al 2424) llevan ligadura amarilla.

También existen grupos con unidades básicas de 8-8-9, 8-9-9, 12-13 y 12-14 pares.

Tipos de cable multipar.

Son muchas las clasificaciones que podríamos hacer de los cables multipar, lo mejor es referirnos al catálogo de un fabricante reconocido.

El fabricante Cervi en su apartado de cable telefónicos ofrece la siguiente clasificación:

Tipos de cables multipar - EL CAJÓN DEL ELECTRÓNICO
Fig. 4.Tipos de cable telefónico (cervi.es)

Las mangueras con cubierta tipo EAP (Estanco de Alumnio Polietileno) poseen una cinta de aluminio-polietileno aplicada longitudinalmente por debajo de la cubierta, mientras que las de tipo EAPSP agregan una segunda cubierta con acero corrugado.

Características de un cable multipar.

Veamos las características de un cable mutipar, tomando como ejemplo las referencias que nos proporciona el fabricante Televés tanto para cable multipar como para cable de acometida de usuario, todos  normalizados para instalaciones de ICT.

Características de un cable multipar - EL CAJÓN DEL ELECTRÓNICO
Fig. 5. Características de diferentes cables multipar (Televés).

Características de un cable de acometida de dos pares - EL CAJÓN DEL ELECTRÓNICO
Fig. 6. Características de dos cables de acometida de usuario (Televés).

 

PVC: Policlururo de Vinilo; PE: Polietileno; LFSH: Aislante no propagador de llama; Al: Aluminio; Vac: Tensión en corriente alterna; Vdc: Tensión  en corriente continua.

Separación del trenzado (mm): longitud de una vuelta de trenzado, varía de unos pares a otros para minimizar la diafonía (interferencia entre pares). Cuanto menor sea esta longitud, mejor.

Resistencia óhmica (ohmios/Km): resistencia de bucle en un par de un kilómetro de longitud. Para su medida se puentea el par en uno de sus extremos, colocando un óhmetro en el otro, se desea un valor bajo.

Resistencia de aislamiento (Mega ohmios/Km): Resistencia entre los dos hilos de un par en bucle abierto y resistencia entre cada uno de los hilos del par y la pantalla del cable multipar. La medida se realiza con un Megóhmetro o megger (introduce una tensión de 500 Vdc al realizar la medida) y deseamos que el valor sea lo más alto posible.

Rigidez dieléctrica entre conductores (voltios) : máxima tensión que soporta un par sin perder las propiedades aislantes, cuanto más alta mejor.

Rigidez dieléctrica nucleo pantalla (voltios): máxima tensión que soporta cada hilo del par respecto a la pantalla del cable multipar, cuanto más alta mejor.

Capacidad mutua (nanofaradios/Km): es la capacidad entre los conductores de un mismo par.
La medida se realiza con corriente alterna de 800 Hz y a la temperatura de 20°C, mientras que los demás conductores están unidos entre sí y a tierra, debe ser menor 54 nF/Km en cualquier par.

Conexiones en el cable multipar

Regletas tipo IDC

Se instalan en el registro principal y en los registros secundarios (en edificios). Si están en el registro principal, por la parte superior (donde no lleva número) se insertan los pares que van al PAU de cada vivienda y por la parte de abajo (número), el operador dará alimentación a los pares de los usuarios abonados.

Cuando se instalan en los registros secundarios por la parte superior de la regleta van los pares conectados a los PAUs de la planta y por la parte de abajo se conectan los pares segregados del cable multipar que va por la canalización principal alimentando las diferentes plantas.

Regleta telefónica IDC - EL CAJÓN DEL ELECTRÓNICO
Fig. 7. Regleta IDC de 5 pares en registro secundario.

 Para conectar  los pares en la regleta IDC se utiliza una herramienta de impacto con inserción y corte.

Herramienta de inserción para regleta IDC - EL CAJÓN DEL ELECTRÓNICO
Fig. 8.Herramienta de impacto para reglega IDC.

Esta herramienta de impacto también la podemos encontrar sin la tijera, que es más usada para la conexión del cable de pares en las bases de tipo RJ45.

Herramienta de inserción para RJ45 - EL CAJÓN DEL ELECTRÓNICO
Fig. 9. Herramienta de impacto para base RJ45.

Registro principal de telefonía con regletas IDC de salida - EL CAJÓN DEL ELECTRÓNICO
Fig. 10. Regletero de salida en el registro principal. Se aprecia como el cable que va hacia la canalización principal es de 50 pares, con sus dos unidades básicas de 25 pares una con ligadura blanco/azul y la otra con blanco/naranja.

Conexiones en registros sobre fachada

Aunque la ICT no contempla este tipo de instalación, antes de 2003, la mayoría de instalaciones se hacían llegando con un cable multipar a un registro de fachada y distribuyendo desde este a los PAU (antiguos PTRs) de los usuarios.

Hay que tener en cuenta que si un edificio es anterior a 2003, tendrá este tipo de instalación.

Registro telefónico de planta exterior - EL CAJÓN DEL ELECTRÓNICO
Fig. 11. Registro de planta exterior de 20 pares sobre fachada.

Empalmes de cable multipar 

Para realizar los empalmes en planta exterior se utilizan los conectores UY. Todo queda estanco  gracias a una cubierta denominada coloquialmente  «torpedo».

Empalme de hilos en cable multipar - EL CAJÓN DEL ELECTRÓNICO
Fig. 12. Empalme de cable multipar usando herramienta especial conectores UY.

Colocación de conector UY - EL CAJÓN DEL ELECTRÓNICO
Fig.13. Detalle de colocación de conector UY usando alicates.

Caja de empalme y derivación telefónica exterior - EL CAJÓN DEL ELECTRÓNICO
Fig. 14. Caja de empalme/segregación de exterior  (http://modulotelefonia.blogspot.com.es)

Medidas

Según la ICT (ley de Infraestructuras Comunes de Telecomunicaciones) las medidas que se deben hacer al cable multipar y al de acometida de usuarios son la de resistencia de bucle y la de aislamiento.

Resistencia de bucle de usuario

La ICT especifica que debe medirse el bucle de usuario desde el registro principal hasta el RTR (Registro de Terminación de Red) ubicado en cada vivienda, para ello se utiliza el siguiente procedimiento:

    1. Se puentea el par central de la roseta ubicada en el RTR (PAU), puede usarse un conector RJ45 macho  punteando los hilos 4 y 5.
    1. Se localiza el par en el registro principal ubicado en el RITI y medimos la resistencia del bucle con un polímetro en modo resistencia.
  1. El valor obtenido debe ser menor de 40 ohmios.

Resistencia de aislamiento

    1. Desconectamos los pares a medir en los PAUs ( Punto de Acceso de Usuario)  de todas  las viviendas.
    1. En el RITI, localizamos todos los pares y  con un megger colocado en medición a 500 Vdc medimos par a par. El valor obtenido debe dar mayor de 100 Megaohmios.
  1. También se medirá entre cada hilo y la pantalla del cable multipar. El valor obtenido debe dar mayor de 100 Megaohmios.

Para la realización de estas medidas se suele utilizar un clavija de corte y prueba que se inserta en el regletero del registro principal asegurando la desconexión del par antes de realizar la medida que se realiza en las pinzas o bananas que lleva por el otro extremo.

Clavija de corte y prueba - EL CAJÓN DEL ELECTRÓNICO
Fig. 15. Clavija de corte y prueba.

3.- Conclusión

Aunque se esté hablando ya de los cables de pares de categoría 8 y de la fibra óptica, los cables multipar aún tienen su campo de aplicación, de hecho la ICT de 2011 los contempla en uno de los tres supuestos para la instalación de telefonía en los edificios. Lo que si es cierto es que van perdiendo terreno con el tiempo cediéndoselo a la fibra óptica.

Un Saludo.

leandrogg68

GuardarGuardar

GuardarGuardar

Loading

CABLE DE PARES, lo que necesitas saber.


Indice:

1.- Cable de pares ¿qué es?

2.- Vídeo Práctica. Medida de cables de pares.

3.- Cable de pares , lo que también debes saber.

  • Tipos de cable de pares
  • Categorías de un cable de pares
  • Conectores usados en los cables de pares
  • Características de un cable de pares
  • ¿Cómo medir un cable de pares?

4.- Conclusión.

————– + ————-

1.- Cable de pares, ¿qué es?

Un cable de pares es una maguera formada por cuatro pares hilos de cobre, recubiertos de un plástico aislante. Los dos hilos del par se trenzan entre sí  de forma que el campo magnético generado por cada hilo se cancela con el de su par, lo que lo protege de interferencias exteriores y hace que la emisión de señal a otros pares cercanos (crosstalk) sea menor. La longitud del trenzado depende del tipo de cable y cuanto menor sea mejor.

Constitución de un cable de pares - EL CAJÓN DEL ELECTRÓNICO
Fig 1. Cable de pares UTP – Categoría 6

En bajas frecuencias los pares trenzados absorben la mayor parte de los efectos de la interferencia electromagnética, mientras que en altas frecuencias esos efectos se absorben por el blindaje del cable, en caso de existir.

Cada par se identifica mediante colores:

  • Par 1: Blanco-Azul   /  Azul
  • Par 2: Blanco-Naranja   /   Naranja
  • Par 3: Blanco-Verde   /   Verde
  • Par 4: Blanco-Marrón   /   Marrón

Cable: puede ser un único hilo (sólido) o varios hilos muy finos de cobre, en el primer caso las pérdidas son menores y en el segundo se consigue más flexibilidad, ideal para latiguillos de conexión.

Aislamiento: es de polietileno en la mayoría de los casos.

Guía separadora: Se monta en cables de categoría 6 o superior, mejora la distribución de los pares en el interior del cable.

Hilo de rasgado: se usa para pelar el cable tirando de él. En cables STP y FTP es metálico y se utiliza para unirlo a tierra mediante el conector, que en este caso debe ser  tipo RJ49.

Cubierta: de PVC, polietileno o materiales libres de halógenos (no propagan la llama).

Los cables de pares se usan fundamentalmente en Redes de Área Local (LAN) de tipo Ethernet debido a su facilidad de instalación, flexibilidad y  menor costo respecto a los cables coaxiales.

2.- Vídeo Práctica. Medida de cables de pares

En el siguiente vídeo se muestra como comprobar es estado de varios cables de pares utilizando un certificador de cableado Fluke DSP 2000.

3.- Cables de pares, lo que también debes saber

Tipos de cable de pares

Cable UTP: es el más fino y simple, no tiene ningún tipo de pantalla conductora. Su impedancia es de 100 Ω y es muy sensible a las interferencias. Este cable es bastante flexible y económico, siendo el más utilizado. Se usa el conector RJ45 en sus terminaciones.

Cable UTP - EL CAJÓN DEL ELECTRÓNICO
Fig 2. Cable UTP

Cable STP: cada par se envuelve en una malla o pantalla conductora de aluminio, puede disponer de otra general que recubra  todos los pares. Su impedancia es de 150 Ω y para conseguir un buen apantallamiento,  es necesario la conexión a tierra de la pantalla a través de un conector RJ49. Se consigue reducir el ruido eléctrico dentro del cable (acoplamiento de par a par) así como fuera de este (interferencia electromagnética [EMI] e interferencia de radiofrecuencia [RFI]).

Cable STP - EL CAJÓN DEL ELECTRÓNICO
Fig. 3. Conector STP

Cable FTP o ScTP: Posee una única malla  global en contacto con un hilo metálico que se une a tierra por ambos extremos mediante el conector (RJ49), mejorando la protección frente a interferencias respecto al cable UTP. Su impedancia es de 120 Ω y su rigidez es intermedia. El conector utilizado es el RJ49, en caso de utilizar un Rj45 se pierde la posibilidad de conexión de la malla a tierra.

Cable FTP - EL CAJÓN DEL ELECTRÓNICO
Fig. 4. Cable FTP

Categorías de un cable de pares

La Alianza de Industrias Electrónicas y la Asociación de la Industria de Telecomunicaciones (EIA/TIA) en su especificación 568  clasifica los cables de pares trenzados en categorías  dependiendo de la velocidad de transmisión que son capaces de soportar.

Los cables de pares también podemos encontrarlos catalogados por «clases«, cada clase hace referencia a la frecuencia máxima a la que es capaz de trabajar.

Categoría Ancho de banda (MHz) Aplicaciones Notas
Cat. 1 Líneas telefónicas y módem de banda ancha. 1 Mbps.
Cat. 2 Conexión de antiguos terminales informáticos 4 Mbps. En desuso.
Cat. 3 16 MHz Clase C 10BASE-T y 100BASE-T4 Ethernet 10 Mbps en 10BASE-T  y 100 Mbps en 100BASE-T4 (usa los 4 pares).
Cat. 4 20 MHz Token Ring y 10BASE-T Ethernet 16 y 10 Mbps. En desuso
Cat. 5 100 MHz Clase D 10BASE-T y 100BASE-TX Ethernet  10 y 100 Mbps
Cat. 5e 100 MHz Clase D 100BASE-TX y 1000BASE-T Ethernet 100 y 1000 Mbps

En 100BASE-TX usa dos pares y en 1000BASE-T usa los cuatro.

Muy usado por su relación prestación/precio

Cat. 6 250 MHz Clase E 1000BASE-T y 1000BASE-TX Ethernet 1000 Mbps

1000BASE-TX usa sólo dos pares.

Está sustituyendo al de Cat. 5e ya que su precio es solo un poco mayor

Cat. 6a  250  o 500 MHz 10GBASE-T Ethernet 10 Gbps a 100 metros

Necesario cables  tipo FTP o STP

Cat. 7 600 MHz Clase F 10 y 40 Gbps

Cable UTP y FTP

Conector  GG-45 (compatible con RJ-45) o conector TERA.

Cat. 7a 1000 MHz Clase FA hasta 100 Gbps, mejora las características del Cat. 7.

Cable STP o FTP.

Conector  GG-45 (compatible con RJ-45) o conector TERA.

Conectores usados en los cables de pares

Conector RJ45

Está definido por los estándares  de cableado comercial TIA/EIA-568-B. Consta de 8 pines y se utiliza en cables UTP de categorías 3,4,5 y 6.

Conector RJ45 - EL CAJÓN DEL ELECTRÓNICO
Fig. 5. Conector RJ45

El estándar TIA/EIA-568-B.1-2001 define dos terminaciones en el conector RJ45: T568A y T568B. La más habitual es la T568B.

Fig. 6. Terminaciones T568A y T568B en un conector RJ45

Se denomina cable directo al que tiene la misma terminación en ambos extremos, se utiliza para conectar equipos con funciones diferentes, por ejemplo un PC a un switch.

Se denomina cable cruzado al que tiene la T568A en un extremo y la T568B en el otro, se utiliza para la conexión de equipos similares como  dos PCs, dos switches, etc. Los equipos actuales (a partir del standard 1000Base-T) implementan la característica MDI/MDI-X” o Auto-MDIX que evita el tener que utilizar cables cruzados para la conexiones de equipos del mismo tipo. Algunos switches antiguos llevan el puerto uplink que permite conectar a otro switch mediante un cable directo.

Conector RJ49

Posee el mismo formato que el RJ45, permitiendo unir la malla o lámina metálica del cable FTP o STP a la carcasa metálica del mismo. Se usa para categoría 6a y para las anteriores que requieran el uso de cable FTP o STP para minimizar ruido electromagnético en las instalaciones.

Conector RJ49 - EL CAJÓN DEL ELECTRÓNICO
Fig. 7. Conector RJ49

Conector GG45

Cumple el  standard IEC 60603-7-7, desarrollado por la firma Nexans y  compatibles con el RJ45. Este conector separa los cuatro pares en un cuadrante y los aísla con un apantallamiento, permitiendo  alcanzar 40Gbps (frente a los 10Gbps máximos del RJ45) con frecuencias de 600Mhz. Se usa en categoría 7 y 7a.

Conector GG45 - EL CAJÓN DEL ELECTRÓNICO
Fig. 8. Conector GG45

Conector ARJ45

Este conector es compatible con el GG45 y permite conectar un RJ45 aunque sólo se unirán dos de sus pares, hilo 1-2 e hilo 7-8. Es apto para las categorías 7 y 7A.

Conector ARJ45 - EL CAJÓN DEL ELECTRÓNICO
Fig. 9. Conector ARJ45

Conector TERA

Cumple  el estándar IEC 61076-3-104 y desarrollado por la firma Siemon, no es compatible con los conectores de tipo RJ. Se fabrica en versiones de 1, 2 y 4 pares, soportando 1000 MHz (clase FA) sobre cables de Cat. 7A.

Conector TERA - EL CAJÓN DEL ELECTRÓNICO
Fig. 10. Conector TERA de 4 pares

Características de un cable de pares

Veamos, como ejemplo, las características de cuatro cables de pares que nos proporciona la firma Televés.

Características de un cable de pares cat 5 - EL CAJÓN DEL ELECTRÓNICO
Fig. 11. Características cable de pares  categoría 5 (Televés)

Características de un cable de pares cat 6 - EL CAJÓN DEL ELECTRÓNICO
Fig. 12. Características cable de pares  categoría 6 (Televés)

¿Cómo medir  un cable de pares?

Para certificar una instalación en una categoría de cable se utiliza  un certificador de cableado.  En el vídeo del apartado 2 se ha utilizado un Fluke DSP 2000, el cual puede certificar hasta Cat. 5e. El equipo mantiene en memoria los valores que establece la norma de la categoría o el standard seleccionado y realiza las mediciones para comprobar si se superan o no.

Un equipo como este nos permite realizar las siguientes medidas:

Mapa de cableado: para detectar abiertos, cortos, pares cruzados, cables invertidos y pares partidos.

Mapa de cableado de un reflectómetro - EL CAJÓN DEL ELECTRÓNICO
Fig. 13. Problemas detectables con un mapa de cableado

Aclaraciones:

– A un Par partido también se le llama Par dividido esto genera un valor de NEXT muy bajo.

– La  Prueba de TDX (interferencia en el Dominio del Tiempo) muestra las ubicaciones donde está ocurriendo interferencia en el cable.

– La Prueba de TDR (Reflectometría en el Dominio del Tiempo) ayuda a localizar anomalías de impedancia en un cable al informar las ubicaciones de las reflexiones de la señal causadas por las anomalías.

Resistencia: indica la resistencia en ohmios (Ω) de cada par, debe dar lo mismo en todos los pares, cuanto menor sea mejor.

Longitud: indica la longitud de cada par, se acepta una variación entre el 2 y 5%.

Retardo de propagación: Mide el tiempo (nano segundos) que tarda la señal en recorrer cada par. Cuanto menor sea mejor.

Sesgo del retardo: Calcula las diferencias en retardos de propagación entre pares. Cuanto menor sea mejor.

Impedancia: Mide la impedancia de cada par. Si se detectan anomalías de la impedancia, se informa de la anomalía más grande detectada en cada par. El cable a medir debe ser mayor de 5 m.

Atenuación: mide la pérdida de potencia (dB). Cuanto menor sea mejor.

RL (Pérdidas de Retorno): mide la diferencia entre la amplitud de una señal de prueba y la amplitud de la señal reflejada que regresa por el mismo par. Los resultados  indican qué tan bien concuerda la impedancia característica del cable con su impedancia nominal en una gama de frecuencias. Se desea un valor alto en esta medida. También puede medirse las RL del remoto.

PP-NEXT o NEXT ( Diafonía en el extremo cercano): mide la diafonía de un par con cada uno de los demás en el extremo del emisor. Se mide en dB y cuanto mayor sea mejor (PP indica que es de Par a Par).

PS-NEXT  (Suma de Potencia NEXT): es la diferencia de amplitud (dB) entre la interferencia recibida en un par y una señal de prueba transmitida en los demás pares en el extremo del emisor. Cuanto mayor sea mejor.

FEXT  (Diafonía en el extremo remoto): es la diferencia de amplitud (dB) entre la interferencia recibida en un par y la señal de prueba transmitida por otro par tomando como referencia el nivel con el que parte en el extremo del emisor. Su valor es algo menor que el NEXT debido a la atenuación que produce el cable.

PP-ELFEXT : es la diferencia de amplitud (dB) entre la interferencia recibida en un par y la señal de prueba transmitida por otro par tomando como referencia el nivel con el que llega al extremo del receptor.

Se calcula así:   FEXT – Atenuación

PS-ELFEXT:   es la diferencia de amplitud (dB) entre la interferencia recibida en un par y la señal de prueba transmitida por los otros tres pares tomando como referencia el nivel con el que llega al extremo del receptor.

ACR (Razón de atenuación a interferencia):  ACR = NEXT – Atenuación. Un valor alto indica que la calidad de la señal transmitida es buena.

4.- Conclusión

Para decidir qué tipo de cableado instalar, debe tenerse en cuenta que debería soportar 3 cambios de switches, esto es, unos 18 años, por lo que actualmente no se debe optar por una categoría inferior a la 6 o 6A. Cuando se trate de centros de datos debe instalarse categoría 7 o 7A.

Aunque la categoría elegida sea la 6 (o menor), en instalaciones en las que haya ruido electromagnético, no se debe dudar en la instalación de cable FTP e incluso STP si estas interferencias son elevadas.

Actualmente se está desarrollando el estándar 40GBASE-T sobre Cat. 8 con frecuencias de hasta 1800MHz y 40Gbps. Se pretende  conseguir retrocompatibilidad hasta 100BaseTX y 1000BASE-T, usando conectores con formato RJ.

Espero que este artículo te sea útil.

Un Saludo.

leandrogg68

GuardarGuardar

GuardarGuardar

GuardarGuardar

Loading

CABLE COAXIAL, lo que necesitas saber.


Indice:

1.-Cable coaxial ¿qué es?

2.- Videopráctica. Medida de características de un cable coaxial.

3.- Cable coaxial , lo que también debes saber.

4.- Conclusión.

————– + ————-

1.- Cable coaxial, ¿qué es?

El cable coaxial fue inventado en 1929 y usado comercialmente por primera vez en 1941.

Este tipo de cable es el más idóneo para la transmisión de señales de frecuencia elevada o Radio Frecuencia (RF), generalmente por debajo de los 5 Giga Hercios (GHz), aunque hay de hasta de 11 GHz como el M17/75-RG365. La interferencias que recibe o emite son mínimas.

Constitución de una cable coaxial - EL CAJÓN DEL ELECTRÓNICO
Fig 1.  Constitución de un Cable coaxial.

Constitución

Vivo, núcleo o conductor central: Transporta la señal transmitida, está compuesto por un único hilo o varios trenzados, de cobre, cobre estañado, cobre plateado (alta calidad) , aluminio cobreado o acero cobrado (alta resistencia).

Dieléctrico o aislante: material de una elevada resistividad que aisla el vivo del blindaje. Puede ser de polietileno, polietileno expandido, polietileno + aire, tefzel y teflón FEP, estos dos últimos se utilizan en cables que soportan altas temperaturas y tienen gran resistencia a los agentes químicos.

Lámina: Cubierta de cobre o aluminio que junto a la malla conforma el apantallamiento del cable coaxial. En algunos cables esta lámina va unida a una o varias de poliéster que le confiere flexibilidad.

Algunos cables coaxiales que no poseen esta lámina, a los que la poseen se les denomina de «doble apantallamiento» siendo su calidad superior.

Malla: Trenzado realizado con hilos finos (husos) de cobre , cobre estañado, cobre plateado, aluminio cobreado o acero cobreado. Al estar conectada a masa absorbe el ruido electromagnético externo impidiendo que alcance al vivo. Cuanto mayor sea el trenzado de la malla más calidad tendrá el cable, este se mide en %, siendo un 100% una malla que cubra completamente el cable. Proporciona integridad al cable y una buena flexibilidad.

Por otro lado, la malla tiene una menor resistencia en DC (corriente continua) que la lámina , y junto con el conductor central determinan la resistencia eléctrica del cable.

Cubierta: Aislante  que protege al cable de agentes externos (polvo, agua, calor, etc). Los materiales más usados son el PVC para cables de interior y el Polietileno para los de montaje a intemperie ya que soporta bien los rayos ultravioletas. Para instalaciones como bibliotecas, teatros, etc., se usan cubiertas de  materiales libres de halógenos que no propagan la llama. En aplicaciones con elevadas temperaturas se utilizan cubiertas de Tefzel o Teflón FEP.

Entre la cubierta y la malla, algunos cables disponen un lámina antimigratoria  que tiene por objeto evitar  que los aditivos de la cubierta y la humedad migren al interior del cable, evitando así el deterioro de sus características.

2.- Vídeo Práctica. Medida de características de un cable coaxial

En el siguiente vídeo se muestra como medir tres características de un cable coaxial: resistencia del vivo, resistencia de la malla y capacidad, posteriormente se realiza la comparación con las medidas dadas por el fabricante.

3.- Cable Coaxial, lo que también debes saber

Características

Impedancia característica (Ω):
Es la oposición del cable al paso de la señal transmitida, se mide en Ω (ohmios). Es constante para cada tipo de cable, no afectándole la longitud del cable ni la frecuencia de la señal transmitida.

Para obtener la máxima eficiencia en la transmisión, la impedancia del transmisor, la del receptor y la del cable deben ser iguales, de no ser así se producirán reflexiones de señal degradando la transmisión.

Los valores  de impedancia habituales en cables coaxiales son: 50Ω para equipos de transmisión, 75Ω para equipos de recepción de RTV, y en deseuso 93Ω para transmisión de señales digitales (redes informáticas antiguas como ARCNET).

Resistencia (Ω).
Es la oposición al paso de la corriente continua. Se suele dar para el vivo y para la malla en Ω x km. El cable será mejor cuanto menor sea este valor.

Capacidad (pF/m)
Es el valor de la capacidad eléctrica medida en picofaradios/metro. Se mide con un capacímetro entre el vivo y la malla. Varía con el tipo de material aislante y con la geometría del cable.

Velocidad de propagación (%)
Es la relación, expresada porcentualmente, entre la velocidad de propagación de la señal en el cable y la velocidad de propagación de la luz en el vacío. Varía según el tipo de dieléctico que contiene el cable. Un 80 % o superior es un buen valor.

Atenuacion (dB/m)
Es la pérdida de potencia en función de la frecuencia, aumentando con esta. Su valor disminuye al aumentar el diámetro del cable, la sección del  vivo y la conductividad del vivo y la malla. Se mide en decibelios/metro o decibelios/kilómetro

Potencia transmisible (W):
Es la potencia que se puede transmitir a una determinada frecuencia sin que la temperatura del cable afecte el funcionamiento del mismo. Disminuye al aumentar la frecuencia y se mide en Vatios.

Tensión de trabajo (kV)
Es la máxima tensión a la que puede trabajar constantemente el cable sin que se produzca el «efecto corona» , descargas eléctricas parciales que provocan interferencias eléctricas y, a largo plazo, la degradación irreversible del aislante.

Pérdidas de retorno (S.R.L.)
Son las pérdidas por retorno de señal ocasionadas por falta de uniformidad en la construcción y de los materiales empleados, que producen una variación puntual de impedancia que ocasiona un retorno de parte de la señal hacia el emisor. Se miden en dB, y un valor elevado de dB indica menos pérdidas.

Estándares

La especificación más difundida que rige la fabricación de los cables coaxiales es la norma  MIL-C-17 que determina  las características dimensionales y eléctricas.

Normas MIL para cable coaxial - EL CAJÓN DEL ELECTRÓNICO
Fig. 2. Ejemplo de especificaciones según Norma MIL-C-17

La norma MIL-C-17 es muy estricta con la respuesta en frecuencia de los cables, por eso en la columna M17 Test Frequency cuando se especifica «swept» se realiza un barrido entre dos frecuencias extremas comprobando que se mantienen las características en todo el rango de prueba.

En este enlace tenéis un tabla completa de cables con las especificaciones MIL-C-17

Todos los cables coaxiales están definidos con las letras RG (Radiofrecuencia – Gobierno) seguida por un número (tipo) y de la letra U (Universal) o A/U, B/U, etc. que indican sucesivas modificaciones y sustituciones al tipo original.
Cables coaxiales más usados - EL CAJÓN DEL ELECTRÓNICO Cables coaxiales más usados - EL CAJÓN DEL ELECTRÓNICO
Leyenda de cables coaxiales más usados - EL CAJÓN DEL ELECTRÓNICO
Fig. 3. Características de cables coaxiales más usados.

¿Cómo elegir un cable coaxial?

Los cables coaxiales se eligen en base a los siguientes parámetros, que dependen de la aplicación que le vayamos a dar:

Impedancia característica (50, 75 o 93 Ω): 50 Ω para emisión, 75 Ω para recepción. 93 Ω apenas se utiliza (redes informáticas antiguas).

Frecuencia de trabajo (de 100 kHz a varios GHz): Con esta tabla, se elige el cable que soporte la frecuencia que vamos a transmitir.

Atenuación máxima (de 1 a varios cientos de dB/100 m): dependerá de la frecuencia de la señal transmitida, a más frecuencia más atenuación.

4º Potencia máxima (de unos pocos W hasta algún kW): sólo si es un cable para emisión.

5º Máxima tensión de señal: sólo si es un cable para emisión.

Los demás parámetros, aunque tienen su importancia, son secundarios.

En el siguiente enlace os dejo una web con una buena guía para elegir el cable coaxial y el conector que mejor se ajuste a tus necesidades:  digikey.com

Los cables coaxiales más usados

Algunos fabricantes dan su propio nombre al cable, sin usar la nomenclatura RG, un ejemplo es el famoso T-100 de la firma Televes, realmente este es un RG-6.

También son muy conocidos y utilizados los cables tipo  LRM o de bajas pérdidas,  una marca registrada de Times Microwave System.

De 50 Ohm
Son utilizados en instrumentación de todo tipo: PC, equipos e instrumental de laboratorio y conexión a antenas de emisión. El más conocido es el RG-58 aunque tiene muchas pérdidas, siendo mejor el RG-213 para tiradas largas, aunque su diámetro es el doble del anterior (10,3 mm frente a 4,95 mm), ambos son útiles hasta 1 GHz. Cuando se requiere un cable más fino que el RG-58,  el más utilizado es el RG-174 (2,8 mm),  soporta también hasta 1GHz.

Si se necesita un cable fino para frecuencias superiores a 1GHz, se utiliza el RG-316 (2,5mm) y si todavía se necesita más fino, el RG-178 (1,83 mm) ambos soportan señales de hasta 3 GHz y si la longitud es corta, unos centímetros, hasta 5 GHz. Estos cables son los que vemos en las antenas de 5,8 Ghz que se utilizan en los drones para enviar a tierra el vídeo de sus cámaras.

Antena con cable coaxial RG 316 - EL CAJÓN DEL ELECTRÓNICO
Fig. 4. Antena de 5,8Ghz con CABLE RG-316 usada en drones de carreras.

De 75 Ohm
Usados en Circuito Cerrado de TV (CCTV), TV por Cable (CATV) y recepción de señales de Radio y TV. El RG-59 es el coaxial de 75 Ohm de mayor venta en el mercado para señales sin modular (banda base) hasta una frecuencia de 1 GHz debido a sus excelentes características eléctricas y mecánicas combinadas con un bajo costo. Para recepción de señales de RTV se utiliza el RG-6 que permite llegar hasta 3 GHz, lo que lo hace útil para las señales de Frecuencia Intermedia (FI) de recepción satélite.

Para tendidos de gran longitud se utiliza el RG-11 de mayor diámetro y por tanto de menores pérdidas aunque en éste la frecuencia máxima es de 1GHz.

Fig. 5. Características de cables coaxiales más comunes.

4.- Conclusión

Son muchos los tipos de cable coaxial que existen, aquí no hemos hablado de los submarinos y los que se montan en instalaciones de máxima seguridad como cárceles, pero todos tienen en común lo que se ha expuesto aquí.

Aunque la fibra óptica está ganando terreno al cable coaxial, hay muchas aplicaciones  para distancias cortas en las que se mantendrá el cable coaxial.

Después de la fibra óptica, el cable coaxial es la mejor opción para transportar señales de radiofrecuencia a grandes distancias, mejor que el cable de pares, el inconveniente es que es más voluminoso y caro que este último.

Un Saludo.

leandrogg68

Loading

ECUALIZACIÓN


Ecualización
Indice:

1.- Ecualización, ¿qué es?

2.- Vídeo Práctica: Ecualización de una Sala

3.- Ecualización de una Sala, lo que también debes saber

4.- Conclusión

————– + ————-

1.- Ecualización, ¿qué es?

La ecualización consiste en modificar la amplitud de la señal de sonido en determinadas frecuencias para conseguir que el sonido sea más real o se adapte a las preferencias del oyente.

La ecualización  se realiza tras la instalación de cualquier sistema de sonido en una ubicación : auditorios, salas de conciertos, discotecas, pub, cines, etc; es necesaria debido a que cuando sonorizamos un recinto, se produce un campo sonoro¹ ligado a las características constructivas del mismo y se generan realces y atenuaciones de determinadas bandas de frecuencia que modifican el sonido original.

campo sonoro en auditorio
Figura 1: Campo sonoro de un Auditorio

La ecualización  compensa las  variaciones de nivel en determinadas frecuencias que aparecen al crearse el campo sonoro y se puede hacer de dos formas:

1ª.- Mediante colocación de los elementos físicos:

  • Colocación de materiales porosos  como yesos, lanas de vidrio, lanas de roca, fieltros, etc; su absorción acústica varía con la frecuencia del sonido teniendo mayor coeficiente de absorción¹ en las frecuencias agudas. Si el material es más poroso y mas grueso aumenta el coeficiente de absorción en  frecuencias más bajas, no obstante su campo de utilización es en la absorción de sonidos medios y agudos (> 700 Hz)

materiales porosos
Figura 2: Coeficiente de absorción de materiales porosos

espumas material poroso
Figura 3: Esponja piramidal (como la instalada en el plató de TV de nuestro centro educativo)

 

  • Colocación de placas vibrantes. Suelen ser paneles de madera (contrachapada), apoyados sobre bastidores a una determinada distancia de la pared. El mayor problema que presenta este sistema es su selectividad en las frecuencias (entre 200 y 700 Hz).

placas vibrantes
Figura 4: Placas vibrantes colgadas de techo y fijadas a pared

  • Colocando paneles resonadores (resonadores de Helmholtz) con los que se realiza una absorción selectiva. Consisten  en un receptáculo en forma de celda, que separa el aire del resto a través de un pequeño cuello. Las frecuencias para las que se suele utilizar están en el rango de unos 200 a 4000 Hz.

paneles resonadores
Figura 5: Panel resonador

 

2ª.- Mediante equipos electrónicos:  Ecualizador gráfico (lo más usual), ecualizador paramétrico¹ (complementa al ecualizador gráfico) y ecualizador paragráfico (mezcla de gráfico y paramétrico)

2.- Vídeo Práctica: Ecualización de una Sala

En este video realizo la ecualización del plató de televisión de mi centro educativo. Utilizo un  sistema de sonido triamplificado con un ecualizador Behringer Ultragraph pro FBQ 3102, un filtro activo Behringer CX 3400 y etapas de potencia DAS E2,E4 y E8.

Tras realizar esta práctica mis alumnos de 2º de Sistemas de Telecomunicaciones e Informáticos, en la asignatura de Sistemas de Producción Audiovisual, destaco el buen trabajo realizado por este grupo:  Curso 17 18

 

3.- Ecualización de una sala, lo que también debes saber

Tras aplicar ruido rosa¹ a una sala, y mediante un analizador de espectro de sonido, se puede obtener la curva de respuesta en frecuencia  (color negro en la figura 6); se aprecia que hay una serie de ondulaciones (picos y valles) que aparecen debido al campo sonoro creado en la sala.

ecualización - ecualizador paragráfico
Figura 6: Modificación de curva de respuesta en frecuencia con un ecualizador

Lo que se pretende  es contrarestar esta variaciones, de forma que podamos obtener una curva como la de color púrpura (curva corregida) lo más plana posible.

Es este ejemplo se ha utilizado un ecualizador paragráfico que nos permite ajustar la frecuencia central del cada uno de los cortes dentro de un rango (potenciómetro ubicado bajo cada corte) no obstante lo habitual es usar un ecualizador gráfico de 1/3 de octava y en la mayoría de las veces es suficiente; de no ser así, se añade un ecualizador paramétrico que permite hacer las correcciones con más precisión.

No debemos obsesionarnos con lo plana que quede la curva, una variación de ±2dB no es apreciable y si lo que estamos ecualizando es una sala donde sólo se reproducirá voz una variación de ±5dB en el rango de 100 Hz a 10.000 Hz tampoco será apreciable.

Para conseguir una buena ecualización, primero se debe reducir el tiempo de reverberación¹ de la sala, es decir, reducir las reflexiones al máximo, esto se consigue con la colocación de materiales absorbentes del sonido.

Los ecualizadores, por tanto, se utilizan para retocar los desajustes en el campo sonoro que no puedan realizarse con elementos absorbentes y conseguir finalmente una respuesta en frecuencia lo más plana posible.

A nivel doméstico,  puedes realizar la ecualización de tu habitación o estudio, sólo necesitarías un ecualizador, un micrófono, un teléfono móvil y un ordenador:

1º.- Descargas una pista de ruido rosa y lo guardas el móvil; mejor que sea en formato .wav, ya que el .mp3 pierde calidad.

2º.- Instalas un analizador de spectro de audio en tu pc, hay muchos gratuitos en internet,los llaman visualizadores de música (son las típicas barritas que suben y bajan con el audio).

3º.- Conectas un micro, que tenga la respuesta en frecuencia lo mas plana posible, a la entrada de micro (o USB) de tu PC y compruebas que al hablar suben y bajas las barritas del analizador de espectro.

4º.- Conectas tu móvil en la entrada del ecualizador y la salida de éste, al  amplificador (o altavoces autoamplificados) que tengas para reproducir la música.

5º.- Reproduces el ruido rosa de tu móvil y visualizas los niveles en el analizador del PC.

6º.- Modificas los cortes del ecualizador para que la curva de respuesta en el analizador quede los más plana posible.

7º.- Listo, ya lo tienes, sólo debes conectar el reproductor de música  (móvil, mp3, pc) a la entrada del ecualizador.

Si vas a reproducir siempre con el PC, puedes ahorrarte el ecualizador, usando uno tipo software, todo el proceso sería igual con las únicas diferencias:

  • La salida de audio del PC iría conectada al amplificador o altavoces autoamplificados
  • El móvil ya no hace falta para nada, se reproduce el ruido rosa con el PC
  • Para el analizador de espectro es mejor que utilices otro PC ( un portátil por ejemplo) ya que puedes tener problemas al reproducir el ruido rosa y visualizar los niveles captados por el micro en el mismo PC, si lo consigues hacer, pues perfecto, con un solo PC te apañas :).

 

Aclaraciones

Campo sonoro: es la composición de sonidos que se crea en una sala tras   las reflexiones en paredes, techo, suelo y objetos de la misma. Dependiendo de si la sala es más o menos absorbente del sonido tendrá una componente mayor de campo directo ( más ondas directas)  o de campo reverberante (más ondas reflejadas).

Coeficiente de absorción: es un número entre 0 y 1 que indica en qué porcentaje un material absorbe el sonido ( 1 sería  el 100%).  Se obtiene con el cociente entre la Energia  absorbida y la incidente.

coeficiente de absorción
Figura 7 :Distribución de energía sonora incidente (Ei) en un material

 

Ecualizador paramétrico: es un equipo que permite ajustar el nivel (volumen) de un rango de frecuencias (banda) determinado. Posee tres ajustes principales:

  • Frecuencia: para seleccionar la frecuencia central de la banda.
  • Q (factor Q): que permite ajustar el ancho de la banda (selectividad) a modificar. Un valor más alto indica más selectividad (menor ancho de banda).
  • Nivel: realza o atenúa la banda seleccionada.

ecualizador paramétrico
Figura 8: Ecualizador paramétrico

Ruido rosa: es un sonido que contiene todas las frecuencias de espectro audible desde 20 a 20.000Hz y el nivel de potencia por octava ( o tercio de octava ) es el mismo. Como la mayoría de los analizadores de espectro realizan la medida de nivel por octava (o tercio de octava), la curva de respuesta en frecuencia del ruido rosa aparece plana.

No debemos confundir este sonido con el Ruido Blanco que contiene también todo el espectro de audible pero el nivel potencia de cada uno de los tonos (frecuencias) es el mismo.

ruidos rosa y blanco
Figura 9 : Ruido rosa (izquierda) y ruido blanco (derecha)

Tiempo de reverberación: Es el tiempo que tarda en disminuir el sonido 60 dB tras dejar ser emitido por la fuente.

Tiempo-de-reverberación-t60
Figura 10 : Tiempo de reverberación

 

4.- Conclusión

Saber ecualizar una sala es fundamental para cualquier técnico de sonido; toda instalación profesional de sonido  finaliza con una ecualización. La calidad del sonido que se obtiene tras la ecualización es muy superior a cuando no se ha realizado.

Un Saludo.

leandrogg68

GuardarGuardar

GuardarGuardar

Loading

AMPLIFICADOR


Indice:

1.- El Amplificador profesional o etapa de potencia, ¿qué es?

2.- Vídeo Práctica: Configuración de un Amplificador profesional o Etapa de potencia.

3.- El Amplificador profesional, lo que también debes saber.

4.- Glosario.

5.- Conclusión.

————– + ————-

1.- El Amplificador profesional, ¿qué es?

Un Amplificador profesional o Etapa de Potencia, es un equipo de sonido cuya función es aumentar la potencia (tensión e intensidad) de la señal de audio.

Etapa-de-potencia-qsc-usa-400
Figura 1: Amplificador profesional (Etapa de potencia)  QSC USA 400

Un amplificador profesional o etapa de potencia se diferencia de un amplificador doméstico en que el primero es más simple, apenas tiene controles o selectores, pero a cambio entrega mucha potencia ( a partir de 100 vatios) y tiene sistemas de refrigeración que le permiten funcionar a potencia máxima durante muchas horas. En el amplificador profesional lo que se busca es potencia y estabilidad , a veces en detrimento de la calidad.

Un amplificador doméstico tanto Hi-Fi¹ como High-End¹ posee más entradas (phono, radio, micro,auxiliar, CD, etc) , un selector de entradas, corrector de tono¹, unos 100 W de potencia máxima y otras funciones adicionales. Su características relativas al ruido  suelen ser mejores que las de los amplificadores profesionales.

Amplificador-Hi-Fi
Figura 2: Frontal de amplificador doméstico  Hi-Fi

Esquema de bloques de un amplificador
Figura 3: Esquema de bloques de un amplificador doméstico (Sistemas de RTV – Emilio Felix Molero- Ed. Mc. Graw Hill )

En la figura 3 vemos como un amplificador doméstico contiene un bloque llamado amplificador de potencia, realmente es una etapa de potencia con un máximo de 100 vatios.

2.- Vídeo Práctica: Configuración de un Amplificador profesional o Etapa de Potencia

Configuración de una etapa de potencia QSC USA 400, donde se muestran los modos de funcionamiento stereo, paralelo y puente mono. Además se indica como se puede conseguir el modo paralelo en una etapa de potencia DAS E2 sin microswitch  de configuración.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica  Etapas de potencia   

Video Informe destacable Curso 17 18

Video Informe destacable Curso 18 19

3.- El Amplificador profesional o Etapa de Potencia, lo que también debes saber

Veamos las características que debemos conocer en una etapa de potencia, tomaré como ejemplo la QSC USA 400 usada en la vídeo práctica.

característica qsc usa 400
Figura 4: Caraterísticas de la etapa de potencia QSC USA 400

Potencia de salida  (output power):    El fabricante nos da tres valores de potencia eficaz (RMS)¹ para un altavoz de 8 ohmios:

    • 110 W para el estándar FTC¹, siendo este el más restrictivo
    • 125 W para el estándar EIA¹, equipos con menos calidad
  • 400 W para el modo puente mono¹ (bridged mono), en las mismas condiciones  que EIA pero haciendo trabajar los dos canales del amplificador como uno solo.

Dynamic Headroom:  expresa, en decibelios, la razón entre la potencia de salida máxima que un amplificador puede producir en cortos períodos de tiempo (décimas o algún segundo) y la potencia RMS.

En el QSC USA 400 es de 1,9 dB lo que indica que la potencia máxima puede alcanzar es casi el doble de la RMS (el doble serían 3 dB).

Distorsión:  Hay dos tipos de distorsión a tener en cuenta en un amplificador: Distorsión armónica Total (THD)¹ y distorsión por InterModulación (IM)¹en nuestro amplificador el fabricante da la distorsión por  intermodulación indicando que es menor del 0,1 % según el estándar de medida establecido por la SMPTE (Society of Motion Picture Televisión Engineers), es un buen valor. En el caso que nos hubiera dado la distorsión THD también debería ser menor de 0,1% para una etapa de potencia como esta.

Respuesta en frecuencia: indica la variación de la amplificación respecto a la frecuencia. En la QSC USA 400 se da de dos formas:

  • 20 Hz – 20 KHz ±0,1dB  -> se mantiene constante la amplificación en este rango de frecuencia con solo una variación de ±0,1dB, ciertamente está muy bien.
  • 8 Hz – 60 KHz  -3dB      -> al ampliar el rango de frecuencia se amplia la variación, indicando que en 8 Hz y 60 KHz decae 3 dB. Esto es un valor normal. El que se amplíe el rango de frecuencia por encima de 20 KHz (límite audible humano) es para reducir el THD, ya que a estas frecuencia tan elevadas hay armónicos que deben ser amplificados para que no se modifique el timbre¹ del sonido original.

Factor Damping o  de amortiguamiento: es el cociente entre la impedancia del altavoz conectado al amplificador y la impedancia de salida de la etapa de potencia (décimas de ohmio).

Fig. 5 : Influencia del cable en el factor de amortiguamiento y la perdida de potencia.

Este factor establece la capacidad del amplificador de frenar al altavoz cuando cesa la señal aplicada, de forma que no se quede vibrando a su frecuencia de resonancia, esto hace que el sonido sea más limpio, que queden espacios temporales libres de sonido. Un ejemplo de alto amortiguamiento es cuando estamos en un pub con la música alta, hablamos con otra persona y se nos entiende perfectamente.

Su valor está influenciado por la longitud y sección del cable utilizado, así como de la impedancia de la caja acústica conectada. Un valor por debajo de 20 no se debe permitir, se aconseja un valor por encima de 50.

Se puede permitir una pérdida de potencia de un 10% en el cable y no lo notaremos mucho, pero si el factor de amortiguamiento es menor de 20, la calidad del sonido se verá muy afectada, escucharemos un sonido muy aglutinado, con poca nitidez.

Relación señal/ruido: Relación entre el nivel de  señal máxima sin distorsionar y el ruido de fondo generado por el amplificador:

S/N  =  20 * log (Señal máx.  / ruido)

105 dB es un buen valor, en Hi-End se obtienen valores  de 115 o 120 dB.

Fig. : Relación S/N, Head room  y  Rango Dinámico en un preamplificador

Sensibilidad de entrada: es el nivel de tensión eficaz (VRMS) que se necesita aplicar en la entrada del amplificador para obtener la potencia máxima (nominal) en la salida, manteniendo los controles de nivel de entrada al máximo.

El valor que nos da el fabricante en nuestro ejemplo es de 1,2V con un altavoz de 8 ohmios, si se le aplicaran más de 1,2V, saltarían las protecciones térmicas. Para que esto no suceda se instala un limitador en su entrada, este dispositivo puede venir de forma independiente o estar incluido en el equipo que proporciona  la señal a la etapa de potencia como puede ser un ecualizador o un filtro activo (crossover).

Los limitadores se ajustan mediante un potenciómetro que muestra el nivel de la limitación en dBu, por lo que hay que hacer la conversión del nivel en voltios de la sensibilidad de entrada a dBu, esto se haría así:

dBu  =  20 log V  / 0,775

Siendo V la tensión en voltios de la sensibilidad de entrada de la etapa de potencia.

Hagámolos para una sensibilidad de entrada de 1,2 V:

dBu  =  20 log 1,2  / 0,775  = 3,79

Ajustaríamos, por tanto el potenciómetro del limitador a 3,5 dBu (un poco menos).

Impedancia de entrada: Es la carga que ofrece el amplificador al mezclador. Debe ser de al menos 10 KΩ, de forma que si se necesita que un mezclador excite, digamos, a 10 amplificadores en paralelo (algo frecuente en instalaciones de megafonía), la carga total será 10 KΩ / 10 = 1 KΩ que es todavía una carga cómoda para el mezclador.

características amplificadores DAS
Figura 6: Características de amplificadores profesionales DAS serie E.

La figura 5 muestra otro ejemplo de características de amplificadores de potencia de la marca DAS, veamos algunos detalles:

    • Tienen muy buen valor de distorsión THD y de intermodulación.
    • El factor damping disminuye con la impedancia de carga.
  • La relación señal/ruido podría ser mejor  (92 dB).

4. Glosario.

Hi-Fi: High Fidelity o alta fidelidad, son equipos de sonido de uso doméstico, habitualmente de tipo modular que cuidan mucho sus características para ofrecer un sonido de alta calidad.

High-End: Equipos como los Hi-Fi, también para uso en el hogar, pero con una características de calidad superiores a estos. Son lo mejor y más caro del mercado doméstico, destinados a audiófilos que buscan el mejor sonido.

Corrector de tonoAjustes ubicados en el amplificador doméstico, que realzan o atenúan tanto los graves (frecuencias bajas) como los agudos (frecuencias altas), consiguiendo adecuar el sonido a las preferencias del usuario.

Potencia eficaz (RMS): la indicación RMS viene de Root Mean Square o valor cuadrático medio. Es la potencia máxima que es capaz de entregar el amplificador de forma continua, se utiliza para compararla con otros amplificadores. Algunos fabricantes, intentan confundir al comprador aportando valores de potencia máximos o de pico, superiores al RMS que no sirven para comparar potencias entre equipos de diferentes marcas.

FTC: Estándar establecido por la Comisión Federal de Comercio, que requiere que el fabricante indique la potencia media nominal (RMS) que entrega el amplificador con ambos canales sonando a la vez, y dentro del rango de frecuencia anunciado como estándar (por lo general de 20 Hz a 20 kHz), sin superar un límite de distorsión armónica total (THD), usualmente 0.1%. También deben cumplir con una cierta desviación máxima de fase eléctrica y mantener acotado el ruido de fondo en un nivel especificado.

EIA: Estándar establecido por la Asociación de Industrias Electrónicas, refleja la potencia de salida de un solo canal sonando en una banda de frecuencias medias, por lo general de 1 kHz, con 1% de distorsión armónica total (THD). Esta norma infla la potencia  entre 10 y 20% más que el estándar FTC.

Modo puente mono: es una configuración de la etapa de potencia en la que se hace trabajar a los dos canales como si de uno sólo se tratara. Se consigue una gran potencia, más que la suma de ambos canales y se conecta un único altavoz, generalmente entre las bornas positivas de ambos canales.

Distorsión armónica Total (THD): La forma de la onda entregada por un amplificador difiere ligeramente de la aplicada a la entrada, esto es debido a que el amplificador modifica su timbre¹ (nivel de sus armónicos). La distorsión armónica total mide, en % , esta variación. Un valor menor de 0.1 % está bien para una etapa de potencia. Para amplificadores Hi-Fi  y Hi-End se manejan valores inferiores a 0,05 % .

Distorsión por Intermodulación (IM): Si introducimos en un amplificador dos tonos puros (ondas senoidales) de frecuencias f1=1000Hz y f2=100Hz en la salida tendremos estos tonos y además los armónicos suma y diferencia, es decir:

f1,    f2,    f1+f2,     f1-f2 ,    2(f1+f2),    2(f1-f2),    3(f1+f2),    3(f1-f2), …

La distorsión por intermodulación mide en % el nivel de estos productos de modulación, tomando como referencia el nivel de los tonos f1 y f2. Un valor menor de 0.1 % está bien para un amplificador profesional.

Timbre: Cualquier  sonido de frecuencia f1 puede descomponerse en una serie de tonos puros (ondas senoidales) con frecuencia múltiplo del sonido original  (f1, 2f1, 3f1, etc.), a estos tonos se les llama armónicos, y la suma de todos ellos define el timbre de ese sonido.

5.- Conclusión

Para adquirir un amplificador, posiblemente el parámetro menos importante sea la potencia del mismo, hay que mirar con lupa todos los parámetros que hemos visto en este artículo, comparar y luego decidir.

No todas las etapas de potencia disponen de configuración en modo puente y modo paralelo; el modo paralelo puede conseguirse mediante conexiones externas, pero es muy conveniente que la etapa tenga las entradas duplicadas. El modo puente (bridge) es interno, y no puede conseguirse con cableado.

Recordad que el amplificador y su pareja la caja acústica deben estar bien compaginados para dar el mejor sonido. La impedancia de la caja acústica no debe ser menor que la que recomienda el fabricante del amplificador y la potencia eficaz (RMS) de la caja acústica debe ser un 20 % superior a la potencia eficaz del amplificador.

Un Saludo.

leandrogg68

GuardarGuardar

Loading