PROCESADOR DE VOZ AVANZADO

Indice: 

1.- Procesador de voz avanzado, ¿qué es?

2.- Vídeo Práctica: Instalación y configuración de un procesador de voz avanzado Behringer

3.- Secciones del procesador: ULTRA VOICE DIGITAL VX-2496

4.- Conclusión

————– + ————-

1.- Procesador de voz avanzado, ¿qué es?

Un procesador avanzado como el de la figura 1, es una mezcla de preamplificador de micrófono, amplificador integrado y ecualizador,  también nos permite una conexión a un sistema de grabación en disco duro (salida RECORDING).

 

Ultravoice digital
Figura 1. Ultra Voice Digital
Procesador de voz avanzado
Figura 2. Entradas y salidas Ultra Voice Digital VX-2496

 

2.- Vídeo Práctica: Instalación y configuración de un procesador de voz avanzado Behringer

VideoPráctica en la que muestro la instalación y configuración de un procesador de voz avanzado Behringer Ultra Voice Digital VX-2496, probando algunas de sus secciones mas interesantes, ya que este procesador nos permite realizar una variedad de configuraciones, como podéis comprobar en el siguiente apartado.

 

3.- Secciones del procesador: ULTRA VOICE DIGITAL VX-2496

Este procesador de voz avanzado tiene 6 tipos de secciones diferentes, para así realizar distintos tipos de configuraciones, veamos a continuación sus características:

1. DISCRETE VINTAGE INPUT: Esta sección se trata de un preamplificador para determinar el nivel de entrada tanto del micrófono como de línea.

Procesador de voz avanzado
Figura 3. Preamplificador
  • LINE: Selecciona entrada de línea (pulsado) y entrada de micrófono (sin pulsar).
  • +48V: Alimentación para micrófonos de condensador.
  • GAIN: Potenciómetro para ajustar el nivel de entrada.
  • FRECUENCY: Selección de la frecuencia de corte por debajo de la zona de baja frecuencia que queremos eliminar.
  • Ø INV: Conmutador que invierte la fase de la señal en 180º.
  • LO CUT: Conmutador para activar un filtro paso alto (corte de bajos), para eliminar ruidos no deseados en frecuencias bajas.

2. EXPANDER: Es un expansor que reduce el volumen de una señal en pasajes silenciosos, es decir, atenúa o elimina ruidos parásitos no deseados. Por ejemplo, para eliminar interferencias molestas de otros instrumentos que, por ejemplo hayan llegado a través de los auriculares del cantante y que también hayan quedado grabadas.

Procesador de voz avanzado
Figura 4. Expansor
  • THRESHOLD: Para determinar el nivel de umbral por debajo del cual actuará el expansor (dB).
  • DEPTH: Para determinar el grado de disminución; cuanto mayor sea el valor, mayor será la atenuación del sonido por debajo de umbral.
  • GATE: Con este conmutador presionado, este se comportará como una puerta de ruido, esta opción es muy apropiada para la edición de impulsos sonoros, ya que se trata de señales relativamente cortas.

3. TUBE EMULATION: Esta sección nos permite proporcionar a la voz ligeros efectos de distorsión y saturación, por lo que se añaden sobretonos¹ para aumentar la zona de agudos.

Procesador de voz avanzado
Figura 5. Emulador de válvula
  • DRIVE: Para determinar la intensidad del efecto de saturación.
  • TUNING: Para determinar el campo de frecuencia que debe saturarse.
  • FULL BW: Conmutador (presionado) para determinar el campo de frecuencia completo.

4. OPTO COMPRESSOR: La función de un compresor óptico es disminuir la diferencia entre los pasajes silenciosos y los sonoros, por tanto, cuando los niveles superen un umbral determinado, pasan a la salida con un nivel de amplificación menor.

Compresor
Figura 6. Funcionamiento de un compresor
Procesador de voz avanzado
Figura 7. Opto compressor
  • THRESHOLD: Para determinar a partir de que nivel el compresor inicia la compresión.
  • FAST: Conmutador (presionado) para que el compresor inicie muy rápido la compresión, una vez se halla superado el nivel.
  • HARD RATIO: Para modificar el grado de disminución de la señal al máximo. el compresor se convierte en un limitador.
  • RELEASE: Potenciómetro para determinar como de rápido debe aplicarse la compresión una vez que se haya superado el umbral.
  • OUTPUT: Potenciómetro para regular el volumen de salida de la señal comprimida.
  • ENHANCER: Potenciómetro para compensar las pérdidas de los posibles campos de frecuencias perdidos.

5. VOICE-OPTIMIZED EQ: Se trata de un ecualizador de tres bandas, que nos permite aumentar o disminuir los campos de frecuencia para compensar las irregularidades sonoras de la señal de entrada.

Procesador de voz avanzado
Figura 8. Ecualizador
  • TUNING: Potenciómetro para seleccionar un campo de frecuencias.
  • WARMTH: Potenciómetro para elevar o disminuir el campo de frecuencias seleccionado.
  • PRESENCE: Potenciómetro para añadirle a la señal agudos y medios superiores (ámbito 1700Hz, para que el canto se asemeje mas a un primer plano), es decir, para darle mas brillantez a la voz.
  • BREATH: Potenciómetro para elevar o disminuir en 8KHz, los ruidos de la señal típicos de la voz.
  • ABSENCE: Conmutador (presionado) para reducir las frecuencias que ocasionan un sonido feo.

6. OPTO DE-ESSER y MASTER FADER: Con esta última sección podremos eliminar los sonidos sibilantes² y  para eliminar acoplos.

Procesador de voz avanzado
Figura 9. Opto DE-ESSER y Master fader
  • THRESHOLD: Potenciómetro para determinar la fuerza con la que se van a eliminar los sonidos sibilantes.
  • CUT FREQUENCY: Potenciómetro para seleccionar el campo de frecuencias que debe eliminarse.
  • MASTER FADER: Potenciómetro para ajustar la señal de salida a la sensibilidad de entrada del aparato conectado en el transcurso de la señal.

 

Aclaraciones:

Sobretonos: Es cualquier frecuencia mayor que la frecuencia fundamental de un sonido.

Sibilante/sibilancia: Es un ruido inspiratorio o espiratorio agudo, que suele ser un efecto secundario en el canto.

 

4.- Conclusión

Este tipo de procesador es muy adecuado para  directo,  en optimización de  señales de canto gracias a su profesional procesamiento de señales.

Nos permite la conexión a un sistema de  grabación, ya que contiene un convertidor A/D  de 24 bits, por lo que evita pasar por una mesa de mezclas y se obtiene una señal limpia, ya que los posibles ruidos secundarios, que pueden surgir por la alimentación, por ejemplo, quedan excluidos desde un principio.

En definitiva, cuando una voz suena muy presente y llena en la mezcla quiere decir en la mayoría de los casos que se ha «manipulado» como es debido.

 

Un saludo.

unnamed-min copia Daniel Rodríguez

Daniel Rodriguez Fernandez

Alumno de 2º de Sistemas de Telecomunicación e Informáticos – SALESIANOS – CARTAGENA

Colaborador de EL CAJÓN DEL ELECTRÓNICO

Revisión técnica: leandrogg68

 

Loading

FILTRO ACTIVO


Indice:

1.- Filtro Activo, ¿qué es?

2.- Vídeo Práctica: Funcionamiento de un Filtro Activo.

3.- Filtro Activo, lo que también debes saber.

4.- Conclusión.

————– + ————-

1.- Filtro Activo o crossover, ¿qué es?

Un Filtro activo o crossover es un equipo de sonido que permite dividir el espectro de frecuencias audibles (de 20 Hz a 20.000 Hz) en varias bandas llamadas vías. Permite ajustar  la frecuencia inicial y final de cada vía, así como el nivel (volumen) de las mismas.

filtro activo behringer cx 3400
Figura 1: Filtro activo Behringer CX 3400.

 

2.- Vídeo Práctica: Funcionamiento de un  Filtro Activo o crossover.

Vídeo Práctica donde se pone en funcionamiento un filtro activo ECLER FAP 2-4 en modo tres vías .

Se visualizan las bandas de frecuencia de bajos, medios y agudos en la pantalla de un Analizador de Señales de Sonido (RTA Behringer Ultracurve DSP 8024) y se escuchan en tres cajas acústicas autoamplificadas DAS DS 108A.

 

En el siguiente enlace se puede descargar una Ficha de Prácticas más elaborada que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica « Filtro activo«

Video Informe destacable Curso 15 16

3.-  Filtro activo o crossover, lo que también debes saber

En cualquier instalación para concierto, discoteca, auditorio, etc, vamos a encontrar un Filtro activo. Este equipo se conecta a la salida principal de la mesa de mezclas (salida master) y tras dividir la señal entrante en varias bandas de frecuencia (vías) se aplica a las etapas amplificadoras  (etapas de potencia).
conexión filtro activo
Figura 2: Conexión de un Filtro Activo.

 ¡Ojo!, cuando compramos una caja acústica lleva un filtro pasivo en su interior, si la vamos a usar en una instalación como la mostrada, debemos eliminar dicho filtro, conectando  el cable del altavoz de graves al +1 y -1 del conector speakon hembra de la caja acústica y el cable del altavoz de agudos al +2 y -2 del mismo conector.

Con un filtro activo tenemos el control de muchos parámetros, veamos algunos importantes tomando como ejemplo el filtro Behringer CX 3400 mostrado en la figura 1:

INPUT: Potenciómetro que controla el nivel de entrada de señal, intentaremos que ronde los 0 dB.

LOW CUT: Botón que activa un Filtro  paso alto (corte de graves), eliminando todas las frecuencias por debajo de 25 Hz.  Si nuestras cajas acústicas no son capaces de reproducir estas frecuencias ¿para qué queremos amplificarlas?, pues las eliminamos y ahorramos potencia en la etapa de potencia de graves.

XOVER FREQ: Potenciómetros que ajustan la frecuencia de cruce¹.

DELAY: Potenciómetro que aplica un retraso a la señal de hasta 2 milisegundos. Esto se utiliza cuando las dos cajas acústicas no están a la misma distancia del oyente. Al canal que se conecta la caja más cercana al oyente, se le aplica un retraso para que el sonido las dos cajas acústicas llegue en el mismo instante al oyente. En condiciones normales estará a 0 milisegundos.

GAIN: Potenciómetros de control de nivel (volumen) de cada vía. Normalmente estarán a 0 dB  que significa que el nivel de salida ni se atenúa ni se amplifica.

MUTE: Botón para silenciar la vía (graves, medios o agudos).

INV: Botón para invertir la fase de la señal¹ de una vía.  Cuando a un altavoz se le aplica una señal de audio positiva (semiciclo positivo), empuja el aire hacia fuera, si por algún motivo esto no fuera así, hay una inversión de fase que hace que el sonido pierda calidad, pulsando el botón INV se soluciona este problema.

LIMITER: Botón para activar el limitador¹.

THRESHOLD: Potenciómetro de ajuste del nivel de salida para el limitador

LOW SUM: Botón que convierte en mono las dos vías de graves. Lo normal es activarlo, ya que de esta forma obtenemos unos graves más contundentes.

En el siguiente video se puede ver en funcionamiento el filtro activo Behringer CX3400 (minuto 12:30).

 

Aclaraciones:

Frecuencia de corte : Aparece como una característica de los filtros. Si tomamos como ejemplo un filtro paso bajo, la frecuencia de corte será  aquella a partir de la cual el filtro no deja pasar la señal. Como esto no ocurre de una forma tajante, se considera frecuencia de corte aquella en la que el nivel de señal disminuye 3 dB (sobre un 30 %) respecto del nivel de las frecuencias anteriores. La cantidad de frecuencias de corte en un filtro depende del tipo de filtro: los filtros paso bajo y paso alto, tienen sólo una frecuencia de corte y los paso banda y rechaza banda poseen dos.

filtro activo - frecuencia de corte
Figura 3: Frecuencia de corte de un filtro paso bajo.

Frecuencia de cruce: Es una característica de los filtros con varias vías. Es la frecuencia  límite de una vía del filtro  y comienzo de la siguiente, por lo tanto el número de frecuencias de cruce en un filtro activo será el número del vías menos uno.

Fase de la señal: Los altavoces tienen polaridad, si con una pila de 1,5 V aplicamos el positivo al positivo del altavoz y el negativo al negativo del altavoz, veremos como la membrana se mueve hacia fuera. Si se da el caso de que el altavoz de un canal no está en fase con el del otro, por una equivocación en la conexión del altavoz o de los cables que se han utilizado en el resto de la instalación, se produce una pérdida de presión acústica. Este efecto es muy notable en los graves, que suenan como huecos, sin fuerza. En los medios y agudos no es apreciable.

Limitador: Dispositivo electrónico al que se le establece un nivel de salida (volumen) y no permite que la señal saliente supere dicho nivel, independientemente del nivel aplicado a la entrada. Muy útil para proteger a las etapas de potencia, ya que no permitiremos que el crossover entregue más nivel del que acepte la etapa de potencia (normalmente de 0,7  a 1,1 voltios). Los limitadores establecen su ajuste en dBu mientras que las etapas de potencia indican su sensibilidad de entrada (nivel al que entregan su máxima potencia) en voltios, la conversión se realiza con la siguiente fórmula:

dBu = 20 log V / 0,775

siendo V la tensión en voltios de la sensibilidad de entrada de la etapa de potencia.

4.- Conclusión

Si la instalación es de sonido profesional ( nada de HiFi ni doméstico) y se busca calidad y  control en la ecualización, el filtro activo o crossover es un elemento fundamental. Saber manejarlo asegurará el no tener fallas en las etapas de potencia y poder afinar mucho la ecualización ya que vamos a poder ajustar las frecuencias de cruce, el nivel de sonido en cada vía, delays y fase de la señal.

Si eres de los que estás pensando en montarte un home studio sencillito para hacer tus grabaciones domésticas, puedes prescindir del filtro activo, te ahorrarás bastante dinero, no solo por el precio de este, sino porque sólo necesitarás una etapa de potencia.

Un Saludo.

leandrogg68

Loading

MICRÓFONOS – Respuesta en frecuencia de un micrófono


Indice:

1.- ¿Qué es el la respuesta en frecuencia de un micrófono ?

2.- Vídeo y Práctica.

3.- Lo que también debo saber de la respuesta en frecuencia de un micrófono.

4.- Conclusión.

————– + ————-

1.- ¿Qué es la respuesta en frecuencia de un micrófono?

La respuesta en frecuencia de un micrófono viene dada con un curva como la siguiente:

Fonestar FCM-440 - Respuesta en Frecuencia

En ella apreciamos el nivel con el que capta el sonido el micrófono para cada frecuencia, en definitiva lo que vemos es la sensibilidad del micrófono en todo el rango de frecuencias audible, de 20 – 20.000 Hz.

2.- Vídeo y Práctica.

En el siguiente vídeo explico como  obtener, de forma práctica, la curva de respuesta en frecuencia de un micrófono de condensador (Behringer B1) y otro dinámico (AKG D880), para ello utilizo un analizador de espectro en tiempo real (RTA)  Behirenger Ultracurve DSP 8024

 

A continuación, se muestra el Vídeo Informe de un grupo de alumnos de Formación Profesional del centro Salesianos – Cartagena en el que se refleja el procedimiento de realización de la práctica definida, donde además de obtener la curva de respuesta en frecuencia se estudia el comportamiento de un micrófono dinámico.

 

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica «Conexión de micrófonos«

3.- Lo que también debo saber de la respuesta en frecuencia de un micrófono.

Conocer la respuesta en frecuencia  nos da una información muy valiosa para elegir el micrófono más adecuado. Lo que se busca es que el micrófono tenga una sensibilidad constante, para el rango de frecuencias que deseamos captar, es decir que no «coloree» el sonido.

Por ejemplo un micro para un bombo debería tener una curva de respuesta en frecuencia plana en los graves (frecuencias bajas) y uno para violín lo mismo para medios y agudos.

Los micrófonos de condensador se caracterizan por tener una respuesta más plana que los demás, esto hace que sean elegidos mayoritariamente para la captación de sonido de instrumentos musicales sobre todo los que generan frecuencias medias y agudas.

 

Aclaraciones:

Colorear el sonido : modificación de la curva de respuesta en frecuencia de un equipo debido a las características del mismo.

Sensibilidad de un micrófono: nivel de señal que entrega el micrófono para la presión de un pascal,  se mide habitualmente en mV/pa. Un micro dinámico tiene valores que oscilan por los 2 mV/pa mientras que uno de condensador suele tener en torno a 15 mV/pa. La sensibilidad depende de la frecuencia, es por esto que aparece el concepto motivo de este post: curva de respuesta en frecuencia.

4.- Conclusión

Cuando vayas a comprar un micro, observa la curva de respuesta en frecuencia que te da el fabricante, debe ser los más plana posible para las frecuencias que quieras captar. Si luego quieres retocar alguna banda de frecuencia, lo podrás hacer con la sección de ecualización de la mesa de mezclas.

Un Saludo.

leandrogg68

 

Loading

MICRÓFONOS – Ruido de un micrófono (Ruido Equivalente)


Indice:

1.- ¿Qué es el ruido de un micrófono?

2.- Vídeo y Prácticas.

3.- Lo que también debo saber del ruido de un micrófono.

4.- Conclusión

————– + ————-

1.- ¿Qué es el Ruido de un Micrófono?

Al ruido de un micrófono también se le llama «Ruido Equivalente» y es el ruido que genera el micrófono de forma inevitable y que deseamos que sea mínimo. Es propio de cada micrófono y no se puede eliminar.

Se mide en dBA (decibelios con ponderación A), siendo un valor muy bueno sobre 12 dBA, un valor rondando los 25 dBA se considera alto, lo que se traducirá con un ruido de fondo que no permitirá grabar sonidos de bajo nivel.

2.- Vídeo y Prácticas.

En el siguiente vídeo explico como se puede comparar el Ruido de dos micrófonos: uno de condensador (Behringer B1) y otro dinámico (AKG D880)

A continuación, se muestra el Vídeo Informe de un grupo de alumnos de Formación Profesional del centro Salesianos – Cartagena en el que se refleja el procedimiento de realización de la práctica definida, donde además de apreciar el nivel de ruido de un micrófono, se estudia el comportamiento de un micrófono dinámico de condensador.

En el siguiente enlace se puede descargar la Ficha de Prácticas que utilizan mis alumnos de Formación Profesional de la rama de Telecomunicaciones. En ella, previo a la práctica, realizan los esquemas de montaje y la resolución de cuestiones preparatorias. Tras su revisión, proceden al montaje de la práctica y toma de medidas y/o datos.

Enlace a  Práctica «Conexión de micrófonos«

3.- Lo que también debo saber del ruido de un micrófono

Al ruido  generado por el micrófono hay que sumar el ruido del preamplificador de la entrada de la mesa de mezclas, aunque este, si la mesa de mezclas es de buena calidad, es mucho menor que el ruido equivalente del micro.

Si disponemos de un micro con un ruido equivalente entre 12 y 15 dBA podremos abusar del nivel de gain (ganancia) del canal donde tengamos conectado el micro en  la mesa de mezclas para conseguir captar sonidos débiles y no apreciaremos un ruido de fondo considerable.

El ruido equivalente influye en la relación Señal/Ruido del micrófono. Generalmente los fabricantes dan la relación Señal/Ruido respecto al nivel de 94 dB de SPL (nivel de presión acústica), por lo que para calcular la relación Señal/Ruido se realizar la operación:

Señal/Ruido = 94 dB SPL  –  Ruido Equivalente (dBA)

Por ejemplo, un micrófono como el AKG C1000 tiene un Ruido Equivalente de 21 dBA, por lo que su relación Señal/Ruido = 94 – 21 = 73 dB. Cuanto mayor sea la relación Señal/Ruido mejor.

Aclaraciones:

dBA (decibelios con ponderación A): es una medida de nivel de presión acústica medida con un sonómetro (equipo de medida de nivel acústico) adaptado para medir niveles acústicos hasta 120 dB. A este equipo se le aplica una corrección denominada «curva de ponderación A» para que capte todas las frecuencia de la misma forma que las capta el ser humano. Nosotros  captamos muy bien los sonidos de frecuencias medias, pero mal los de frecuencias bajas (graves) y los de frecuencias altas (agudos). A este tipo de decibelios también se les llama fonos o fonios y sirven  para medir el nivel acústico subjetivo, es decir, el que realmente escuchamos nosotros.

4.- Conclusión

Cuando vayas a comprar un micro, comprueba que el Ruido Equivalente sea menor de 25 dBA y que se aproxime lo máximo a 12 dBA si lo vas a utilizar para captar sonidos débiles.

Si el micrófono lo vas a utilizar para niveles altos de sonido, por ejemplo para cantar o para instrumentos con gran sonoridad, no debe preocuparte el que el Ruido Equivalente ronde los 20 o 22 dBA.

Es muy importante que el cable que uses para conectar el micro sea de buena calidad  «low noise», lo sabrás por que los vivos del cable (conductores centrales) llevan una malla de cobre independiente cada uno y además están recubiertos con una funda de grafito (parece de plástico) color negro que hace las funciones de pantalla adicional. Te dejo un video donde explico todo esto aquí

La mesa de mezclas que utilices para conectar el micrófono debe tener entradas de bajo ruido, los dos parámetros en los que tienes que fijarte son:

1º Relación señal/ruido: un valor de 108 dB o superior está bien

2º Distorsión THD (distorsión armónica total): un valor de 0,005 % o inferior está bien

Teniendo en cuenta todo lo anterior, disfrutarás de un sonido limpio de ruido.

Un Saludo.

leandrogg68

Loading